Polymer-based catalysts have garnered significant interest for their efficiency, reusability, and compatibility with various synthesis processes. In catalytic applications, polymers offer the advantage of structural versatility, enabling functional groups to be tailored for specific catalytic activities. In this study, we developed a novel magnetic copolymer of methyl methacrylate and maleic anhydride (PMMAn), synthesized via in situ chemical polymerization of methyl methacrylate onto maleic anhydride, using benzoyl peroxide as a free-radical initiator.
View Article and Find Full Text PDF[This retracts the article DOI: 10.1039/D0RA04698A.].
View Article and Find Full Text PDF[This retracts the article DOI: 10.1039/D0RA09420J.].
View Article and Find Full Text PDFIn recent years, the scientific community has focused on traditional natural products and their potential therapeutic benefits. Berberine is a plant-derived isoquinoline alkaloid with a variety of biological properties and identified as a promising pharmacophore for discovering new therapeutic agents against various diseases. However, unfavorable pharmacokinetic properties of berberine have limited its clinical application so much that researchers pursue its structure modification to overcome this problem.
View Article and Find Full Text PDFThe physicochemical properties of materials change significantly in nanometer dimensions. Therefore, several methods have been proposed for the synthesis of nanoparticles. Plant extracts and essential oils are applied as natural and economic resources to prepare nanomaterials especially metal nanoparticles.
View Article and Find Full Text PDFA hydrophilic cobalt/copper heterogeneous bimetallic catalyst named mTEG-CS-Co/Cu-Schiff-base/IL was successfully synthesized from chitosan polysaccharide. The new catalyst was investigated and confirmed using various techniques including FT-IR, FE-SEM, EDX-EDS, XRD, TEM, TGA, AFM, NMR and ICP. The catalyst exhibited powerful catalyst activity for the tandem one pot oxidative chromopyrimidine reaction from benzyl alcohols under mild conditions, utilizing air as a clean source in a green protocol.
View Article and Find Full Text PDFThe Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) is responsible for ongoing epidemics in humans and some other mammals and has been declared a public health emergency of international concern. In this project, several small non-peptide molecules were synthesized to inhibit the major proteinase (M) of SARS-CoV-2 using rational strategies of drug design and medicinal chemistry. M is a key enzyme of coronaviruses and plays an essential role in mediating viral replication and transcription in human lung epithelial and stem cells, making it an attractive drug target for SARS-CoV.
View Article and Find Full Text PDFUpgrading of biomass wastes to value-added materials has been incessantly pursued worldwide with diverse applications, especially deploying photocatalytic composites encompassing metal oxides with acidic and carbon compounds. Herein, the fabrication of a morphologically unique acidic catalyst encompassing a two-dimensional (2D) TiO/g-CN heterojunction feature is described for the generation of 5-hydroxymethylfurfural (5-HMF), which exploits the acidic/ionic liquid (IL) bifunctional photocatalysis under visible light. The structural integrity of the synthesized TiO/g-CN/SOH(IL) was corroborated by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy-energy-dispersive spectroscopy (EDX-EDS), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), UV-vis, Tauc plots, transmission electron microscopy (TEM), and Brunauer-Emmett-Teller-Barrett-Joyner-Halenda (BET-BJH) analyses.
View Article and Find Full Text PDFIn this paper, a new Mn-based metal-organic framework [UoB-6] was obtained a one-step ultrasonic irradiation method with the ligand (Hbdda: 4,4'-(1,4-phenylenebis(azaneylylidene))bis(methaneylylidene))dibenzoic acid. The structural integrity of the synthesized BioMOF-Mn was corroborated by FT-IR, EDX, ICP, XRD, TEM, DLS, FESEM, and BET-BJH analyses. The aerobic oxidative domino reaction of benzyl alcohols or aldehydes with dimedone derivatives was performed in the presence of the UoB-6 catalyst to produce xanthene derivatives in good yields.
View Article and Find Full Text PDFThe new recyclable cobalt three-core magnetic catalyst obtained by anchoring a Schiff base ligand sector and cellulose nanofiber slings on MNP (FeO) was prepared and named as MNP@CNF@ATSM-Co(ii). Separately, MNPs and CNF have adsorbent properties of great interest. In this way, this catalyst was designed to synthesize piperidine derivatives under solvent-free conditions and alcohol oxidation reactions in EtOH as the solvent.
View Article and Find Full Text PDFA heterogeneous, magnetically recoverable nanocomposite, FeO@NFC@ONSM-Ni(ii) was prepared by immobilization of a novel Ni(ii) Schiff base complex on FeO@NFC nanoparticles followed by treatment with melamine. This trinuclear catalyst has been characterized using several analytical techniques including FT-IR, TEM, Fe-SEM, EDX, DLS, ICP, TGA, VSM, and XRD. It was used as an efficient catalyst for one-pot solvent-free synthesis of 1,4-dihydropyridine and poly-hydro quinoline derivatives through Hantzsch reaction.
View Article and Find Full Text PDFToday, most synthetic methods are aimed at carrying out reactions under more efficient conditions and the realization of the twelve principles of green chemistry. Due to the importance and widespread applications of tetrazoles in various industries, especially in the field of pharmaceutical chemistry, and the expansion of the use of nanocatalysts in the preparation of valuable chemical reaction products, we decided to use an (FeO@NFC@NSalophCu)COH nanocatalyst in this project. In this study, the synthesis of the nanocatalyst (FeO@NFC@NSalophCu)COH was explained in a step-by-step manner.
View Article and Find Full Text PDFIn this project, the new catalyst copper defines as FeO@Pectin@(CH)-Acetamide-Cu(II) was successfully manufactured and fully characterized by different techniques, including FT-IR, XRD, TEM, FESEM, EDX, VSM, TGA, and ICP analysis. All results showed that copper was successfully supported on the polymer-coated magnetic nanoparticles. One of the most important properties of a catalyst is the ability to be prepared from simple materials such as pectin that's a biopolymer that is widely found in nature.
View Article and Find Full Text PDFCellulose, as a green and available phytochemical, was immobilized on the surface of magnetite nanoparticles then doped with imidazole and Co. complex (FeO@CNF ∼ ImSBL ∼ Co.) and used as a water-dispersible, recyclable and efficient nano catalyst for the synthesis of C-C cross-coupling reactions including fluoride-free Hiyama and Suzuki reactions in an aqueous medium as an efficient and vital solvent, due to their high application and importance in various fields of science.
View Article and Find Full Text PDFHere presented a quick and easy synthesis of copper nanoparticles (CuNPs). Pistachio hull extract has been used as a reducing and stabilizing agent in the preparation of CuNPs. This biosynthesis is a kind of supporter of the environment because chemical agents were not used to making nanoparticles, and on the other hand, it prevents the release of pistachio waste in nature and its adverse effects on nature.
View Article and Find Full Text PDFIn this work, the new trinuclear manganese catalyst defined as FeO@NFC@NNSM-Mn(iii) was successfully manufactured and fully characterized by different techniques, including FT-IR, XRD, TEM, SEM, EDX, VSM, and ICP analysis. There have been reports of the use of magnetic catalysts for the synthesis of xanthine derivatives. The critical potential interest in the present method include short reaction time, high yields, recyclability of the catalyst, easy workup, and the ability to sustain a variety of functional groups, which give economical as well as ecological rewards.
View Article and Find Full Text PDFToday, due to the developing need for inexpensive catalysts, recyclable magnetic nanocatalysts immobilized on polysaccharides possess many advantages over classical heterogeneous catalysts. However, cellulose has been an appealing material in catalysis science and technology. In this work, by controlling the interaction between the inorganic complexes and the support material, we designed a high activity nanostructured combination of a magnetic nanoparticle FeO@NFC@Co(ii) terminated complex as a multi-nuclear catalyst.
View Article and Find Full Text PDFThe FeO@NFC-ImSalophCu catalyst was used as a highly stable, reusable, active, green catalyst for the synthesis of 1,2,3-triazoles one-pot three-component reaction of phenacyl bromides, sodium azide and alkynes. A Cu(ii)-Schiff base complex containing an imidazolium ionic phase was prepared and decorated on core shell FeO@NFC magnetic nanoparticles (FeO@NFC-ImSalophCu) and was used as an efficient catalyst. The heterogeneous catalyst was characterized by FT-IR spectroscopy, FE-SEM, TEM, XRD spectroscopy, EDX spectroscopy, VSM, and ICP spectroscopy.
View Article and Find Full Text PDF