We present in detail the recorded results of the modified-hybrid optical neural network (M-HONN) filter during a full series of tests to examine its robustness and overall performance for object recognition tasks. We test the M-HONN filter for its detectability and peak sharpness with within-class distortion of the input object, its discrimination ability between an in-class and out-of-class object, and its performance with cluttered images of the true-class object. The M-HONN filter is found to exhibit good detectability, an ability to maintain its correlation-peak sharpness throughout the recorded tests, good discrimination ability, and an ability to detect the true-class object within cluttered input images.
View Article and Find Full Text PDF