Publications by authors named "Pouvreau L"

Faba bean ( L.) is a valuable ingredient in plant-based foods such as meat and dairy analogues. However, its typical taste and aroma are considered off-flavours in these food applications, representing a bottleneck during processing.

View Article and Find Full Text PDF

Near-infrared spectroscopy (NIRS) provides a high-throughput phenotyping technique to assist breeding for improved faba bean seed quality. We combined chemical analysis of protein, oil content (and composition) with NIRS through chemometrics, employing Partial Least Squares (PLS), Elastic Net (EN), Memory-based Learning (MBL), and Bayes B (BB) as prediction models. Protein was the most reliably predicted trait (R = 0.

View Article and Find Full Text PDF

The growing interest in plant protein sources, such as pulses, is driven by the necessity for sustainable food production and climate change mitigation strategies. Faba bean (.) is a promising protein crop for temperate climates, owing to its remarkable yield potential (up to 8 tonnes ha in favourable growing conditions) and high protein content (~29% dry matter basis).

View Article and Find Full Text PDF

Traditionally, meat and dairy products have been important protein sources in the human diet. Consumers are eating more plant-based proteins, which is reflected in current market trends. Assessing how alternative proteins are processed and their impact on food safety helps realize market opportunities while ensuring food safety.

View Article and Find Full Text PDF

To evaluate the importance of the water holding capacity for the elastically stored energy of protein gels, a range of gels were created from proteins from different origin (plant: pea and soy proteins, and animal: whey, blood plasma, egg white proteins, and ovalbumin) varying in network morphology set by the protein concentration, pH, ionic strength, or the presence of specific ions. The results showed that the observed positive and linear relation between water holding (WH) and elastically stored energy (RE) is generic for globular protein gels studied. The slopes of this relation are comparable for all globular protein gels (except for soy protein gels) whereas the intercept is close to 0 for most of the systems except for ovalbumin and egg white gels.

View Article and Find Full Text PDF

Aggregate size and density are related to gel morphology. In the context of the water distribution in complex food systems, in this study, it was aimed to investigate whether protein aggregates varying in size and density differ in entrapped and confined water. Heat-set soy protein aggregates (1%, v/v) prepared in the presence of 3.

View Article and Find Full Text PDF

Water holding (WH) of soy protein gels was investigated to identify which length scales are most contributing to WH when centrifugal forces are applied. More specifically, it was attempted to differentiate between the contributions of submicron and supramicron length scales. MgSO4 and MgCl2 salt specificities on soy protein aggregation (submicron contribution) were used to create different gel morphologies (supramicron contribution).

View Article and Find Full Text PDF

Potato serine protease inhibitor (PSPI) constitutes about 22% of the total amount of proteins in potato tubers (cv. Elkana), making it the most abundant protease inhibitor in the plant. PSPI is a heterodimeric double-headed Kunitz-type serine protease inhibitor that can tightly and simultaneously bind two serine proteases by mimicking the substrate of the enzyme with its reactive-site loops.

View Article and Find Full Text PDF

Three ferulic acid esterases from the filamentous fungus Chrysosporium lucknowense C1 were purified and characterized. The enzymes were most active at neutral pH and temperatures up to 45 °C. All enzymes released ferulic acid and p-coumaric acid from a soluble corn fibre fraction.

View Article and Find Full Text PDF

Two novel arabinofuranosidases, Abn7 and Abf3 from Chrysosporium lucknowense (C1), belonging to the glycoside hydrolase family 43 and 51 were purified and characterized. Abn7 is exclusively able to hydrolyze arabinofuranosyl residues at position O-3 of double substituted xylosyl residues in arabinoxylan-derived oligosaccharides, an activity rarely found thus far. Abf3 is able to release arabinose from position O-2 or O-3 of single substituted xyloses.

View Article and Find Full Text PDF

Two novel acetyl xylan esterases, Axe2 and Axe3, from Chrysosporium lucknowense (C1), belonging to the carbohydrate esterase families 5 and 1, respectively, were purified and biochemically characterized. Axe2 and Axe3 are able to hydrolyze acetyl groups both from simple acetylated xylo-oligosaccharides and complex non-soluble acetylglucuronoxylan. Both enzymes performed optimally at pH 7.

View Article and Find Full Text PDF

The filamentous fungus Chrysosporium lucknowense (C1) is a rich source of cell wall degrading enzymes. In the present paper four arabinose releasing enzymes from C1 were characterized, among them one endoarabinanase, two arabinofuranosidases and one exoarabinanase. Combinations of these enzymes released up to 80% of the arabinose present in sugar beet arabinan to fermentable monosugars.

View Article and Find Full Text PDF

The Clark electrode, which has been commercially available for more than 50 years, is a robust first-generation sensor originally used to determine the concentration of dissolved oxygen. This paper describes a simple experimental setup employing the Clark electrode to measure low concentrations of aqueous solutions of dissolved nitric oxide (NO) (>5nM) and nitrous oxide (N2O) (>50nM) in addition to oxygen (>5nM). The Clark electrode is connected to a low-noise (home-built) amplifier interfaced via a 16-bit AD converter to a computer providing increased signal-to-noise performance.

View Article and Find Full Text PDF

The conformational stability of potato cysteine protease inhibitor (PCPI), the second most abundant protease inhibitor group in potato tuber, was investigated at ambient temperature and upon heating using far- and near-UV circular dichroism spectroscopy, fluorescence spectroscopy, and differential scanning calorimetry (DSC). The PCPI isoforms investigated have a highly similar structure at both the secondary and the tertiary level. PCPI isoforms show structural properties similar to those of the potato serine protease inhibitor group and the Kunitz type soybean trypsin inhibitor, a known beta-II protein.

View Article and Find Full Text PDF

The thermal unfolding of potato serine protease inhibitor (PSPI), the most abundant protease inhibitor group in potato tuber, was measured using far UV CD spectroscopy, fluorescence spectroscopy, and DSC. The results indicate that the thermal as well as the guanidinium-induced unfolding of PSPI occurs via a non-two-state mechanism in which at least one stable intermediate is present. Additionally, the occurrence of aggregation, especially at low scan rates, increases the apparent cooperativity of the unfolding and makes the system kinetically rather than thermodynamically controlled.

View Article and Find Full Text PDF

Potato serine protease inhibitor (PSPI) is the most abundant protease inhibitor group in potato tuber. The investigated PSPI isoforms have a highly similar structure at both the secondary and the tertiary level. From the results described, PSPI is classified as a beta-II protein based on (1) the presence in the near-UV spectra of sharp peaks, indicating a rigid and compact protein; (2) the sharp transition from the native to the unfolded state upon heating (only 6 degrees C) monitored by a circular dichroism signal at 222 nm; and (3) the similarity in secondary structure to soybean trypsin inhibitor, a known beta-II protein, as indicated by a similar far-UV CD spectrum and a similar amide I band in the IR spectrum.

View Article and Find Full Text PDF

Interest in protease inhibitors has been renewed because of their potent activity in preventing carcinogenesis in a wide variety of in vivo and in vitro model systems. Potato tubers contain a wide range of such protease inhibitors. In cv.

View Article and Find Full Text PDF

In the present study the structural properties of potato protease inhibitor 1 (PI-1) were studied as a function of temperature to elucidate its precipitation mechanism upon heating. A cDNA coding for PI-1 from cv. Bintje was cloned and expressed in Pichia pastoris.

View Article and Find Full Text PDF

Isotope labelling of proteins is important for progress in the field of structural proteomics. It enables the utilisation of the power of nuclear magnetic resonance spectroscopy (NMR) for the characterisation of the three-dimensional structures and corresponding dynamical features of proteins. The usual approach to obtain isotopically labelled protein molecules is by expressing the corresponding gene in bacterial or yeast host organisms, which grow on isotope-enriched media.

View Article and Find Full Text PDF

The gene of the most abundant protease inhibitor in potato cv. Elkana was isolated and sequenced. The deduced amino acid sequence of this gene showed 98% identity with potato serine protease inhibitor (PSPI), a member of the Kunitz family.

View Article and Find Full Text PDF

Protease inhibitors from potato juice of cv. Elkana were purified and quantified. The protease inhibitors represent ca.

View Article and Find Full Text PDF

In order to modify the catalytic properties of trypsin, lysine-188 (S1) of the substrate binding pocket was substituted by an aromatic amino acid residue (Phe, Tyr, Trp) or by a histidyl residue. Two other mutants were obtained by displacement or elimination of the negative charge of aspartic acid-189 (K188D/D189K and G187W/K188F/D189Y, respectively). The high affinity inhibitors, like PSTI II and BPTI, behaved as specific substrates of the trypsin and its mutants.

View Article and Find Full Text PDF