Nanoparticles embedded semi-interpenetrating (semi-IPNs) polymeric hydrogels with enhanced mechanical toughness and biocompatibility could have splendid biomedical acceptance. Here we propose poly(methacrylic acid) grafted polysaccharide based semi-IPNs filled with nanoclay via in situ Michael type reaction associated with covalent crosslinking with N,N-methylenebisacrylamide (MBA). The effect of nanoclay in the semi-IPN hydrogel has been investigated which showed significant improvement of mechanical robustness.
View Article and Find Full Text PDFSoft biomaterials derived from polysaccharides are generally suffers from lack of mechanical robustness and instability. The naturally occurring highly abundance low cost polysaccharide has immense aspect as biomaterial after functionalization which can be designed as stretchable and rubber-like elastic with reversible ductility. A highly swellable, stretchable, low creep, non-cytotoxic nanocomposite hydrogel has been fabricated by simple one-pot Michael type covalent grafting of acrylic acid based copolymer onto psyllium biomacromolecular chian by free radical gelation technique.
View Article and Find Full Text PDF