The surface characteristics of scaffolds utilized in bone tissue engineering profoundly influence subsequent cellular response. This study investigated the efficacy of applying a gelatin coat to the surface of aminolysis surface-modified scaffolds fabricated through 3D printing with a polycaprolactone/hydroxyapatite nanocomposite, employing the hot-melt extrusion FDM technique. Initially, aminolysis surface modification using hexamethylenediamine enhanced surface hydrophilicity by introducing amine functional groups.
View Article and Find Full Text PDFSimulating the natural cellular environment using magnetic stimuli could be a potential strategy to promote bone tissue regeneration. This study unveiled a novel 3D printed composite scaffold containing polycaprolactone (PCL) and cobalt ferrite/forsterite core-shell nanoparticles (CFF-NPs) to investigate physical, mechanical and biological properties of magnetoactive scaffold under static magnetic field. For this purpose, core-shell structure is synthesized through a two-step synthesis strategy in which cobalt ferrite nanoparticles are prepared via sol-gel combustion method and then are coated through sol-gel method with forsterite.
View Article and Find Full Text PDFSkin injuries resulting from physical trauma pose significant health risks, necessitating advanced wound care solutions. This investigation introduces an innovative bilayer wound dressing composed of 3D-printed propolis-coated polycaprolactone (PCL/PP) and an electrospun composite of polyvinyl alcohol, chitosan, polycaprolactone, and diltiazem (PVA/CTS/PCL/DTZ). SEM analysis revealed a bilayer structure with 89.
View Article and Find Full Text PDFNowadays, bone injuries and disorders have increased all over the world and can reduce the quality of human life. Bone tissue engineering repair approaches require new biomaterials and methods to construct scaffolds with the required structural properties as well as improved performance. As potential therapeutic strategies in bone tissue engineering, 3D printed scaffolds have been developed.
View Article and Find Full Text PDFProlonged osteochondral tissue engineering damage can result in osteoarthritis and decreased quality of life. Multiphasic scaffolds, where different layers model different microenvironments, are a promising treatment approach, yet stable joining between layers during fabrication remains challenging. To overcome this problem, in this study, a bilayer scaffold for osteochondral tissue regeneration was fabricated using 3D printing technology which containing a layer of PCL/hydroxyapatite (HA) nanoparticles and another layer of PCL/gelatin with various concentrations of fibrin (10, 20 and 30 wt.
View Article and Find Full Text PDFTissue engineering scaffolds are three-dimensional structures that provide an appropriate environment for cellular attachment, proliferation, and differentiation. Depending on their specific purpose, these scaffolds must possess distinct features, including appropriate mechanical properties, porosity, desired degradation rate, and cell compatibility. This investigation aimed to fabricate a new nanocomposite scaffold using a 3D printing technique composed of poly(ε-caprolactone) (PCL)/Gelatin (GEL)/ordered mesoporous calcium-magnesium silicate (om-CMS) particles.
View Article and Find Full Text PDFThis study investigates the safety and efficacy of 3D-printed polycaprolactone/hydroxyapatite (PCL/HA) scaffolds for patient-specific cranioplasty surgeries, employing liquid deposition modeling (LDM) technology. This research is pioneering as it explores the impact of gamma radiation on PCL/HA scaffolds and utilizes printing ink with the highest content of HA known in the composite. The mechanical, morphological, and macromolecular stability of the gamma-sterilized scaffolds were verified before implantation.
View Article and Find Full Text PDFDouble-layer dermal substitutes (DS) generally provide more effective therapeutic outcomes than single-layer substitutes. The architectural design of DS incorporates an outer layer to protect against bacterial invasions and maintain wound hydration, thereby reducing the risk of infection and the frequency of dressing changes. Moreover, the outer layer is a mechanical support for the wound, preventing undue tension in the affected area.
View Article and Find Full Text PDFLow number of circulating tumor cells (CTCs) in the blood samples and time-consuming properties of the current CTC isolation methods for processing a small volume of blood are the biggest obstacles to CTC usage in practice. Therefore, we aimed to design a CTC dialysis system with the ability to process cancer patients' whole blood within a reasonable time. Two strategies were employed for developing this dialysis setup, including (i) synthesizing novel core-shell Cu ferrites consisting of the Cu-CuFeO core and the MIL-88A shell, which are targeted by the anti-HER2 antibody for the efficient targeting and trapping of CTCs; and (ii) fabricating a microfluidic system containing a three-dimensional (3D)-printed microchannel filter composed of a polycaprolactone/FeO nanoparticle composite with pore diameter less than 200 μm on which a high-voltage magnetic field is focused to enrich and isolate the magnetic nanoparticle-targeted CTCs from a large volume of blood.
View Article and Find Full Text PDFThis study is focused on the importance of nanohydroxyapatite (nHA) particle morphology with the same particle size range on the rheological behavior of polycaprolactone (PCL) composite ink with nHA as a promising candidate for additive manufacturing technologies. Two different physiologic-like nHA morphologies, that is, plate and rod shape, with particles size less than 100 nm were used. nHA powders were well characterized and the printing inks were prepared by adding the different ratios of nHA powders to 50% w/v of PCL solution (nHA/PCL: 35/65, 45/55, 55/45, and 65/35 w/w%).
View Article and Find Full Text PDFIn this study, nanocomposite scaffolds of hydroxyapatite (HA)/polycaprolactone (PCL)/gelatin (Gel) with varying amounts of HA (42-52 wt. %), PCL (42-52 wt. %), and Gel (6 wt.
View Article and Find Full Text PDFThe utilization of 3D printing technology for the fabrication of graft substitutes in bone repair holds immense promise. However, meeting the requirements for printability, bioactivity, mechanical strength, and biological properties of 3D printed structures concurrently poses a significant challenge. In this study, we introduce a novel approach by incorporating amorphous magnesium phosphate-graphene oxide (AMP-GO) into a thermo-crosslinkable chitosan/β glycerol phosphate (CS/GP) ink.
View Article and Find Full Text PDFAmong different methods for the fabrication of bone scaffolds, 3D printing has created great advances in tissue engineering and regenerative medicine owing to its ability to make objects mimicking native tissues. Thanks to its abundant availability, structural features, and favorable biological properties, chitosan (CS) hydrogel was selected to be used for preparation of the bone scaffolds. However, the 3D printing of CS-based hydrogels is still under early exploration.
View Article and Find Full Text PDFCorneal transplantation is considered a convenient strategy for various types of corneal disease needs. Even though it has been applied as a suitable solution for most corneal disorders, patients still face several issues due to a lack of healthy donor corneas, and rejection is another unknown risk of corneal transplant tissue. Corneal tissue engineering (CTE) has gained significant consideration as an efficient approach to developing tissue-engineered scaffolds for corneal healing and regeneration.
View Article and Find Full Text PDFMagnesium phosphates (MgP)s have attracted interest as an alternative biomaterial compared to the calcium phosphate (CaP)s compounds in the bone regeneration application in terms of their prominent biodegradability, lack of cytotoxicity, and ability of bone repair stimulation. Among them, amorphous magnesium phosphates (AMP)s indicated a higher rate of resorption, while preserving high osteoblasts viability and proliferation, which is comparable to their CaP peers. However, fast degradation of AMP leads to the initial fast release of Mg ions and adverse effects on its excellent biological features.
View Article and Find Full Text PDFIn tissue engineering, three-dimensional (3D) printing is an emerging approach to producing functioning tissue constructs to repair wounds and repair or replace sick tissue/organs. It allows for precise control of materials and other components in the tissue constructs in an automated way, potentially permitting great throughput production. An ink made using one or multiple biomaterials can be 3D printed into tissue constructs by the printing process; though promising in tissue engineering, the printed constructs have also been reported to have the ability to lead to the emergence of unforeseen illnesses and failure due to biomaterial-related infections.
View Article and Find Full Text PDFIn the current study, we fabricated a bilayer wound dressing consisting of an electrospun poly-ε-caprolactone/chitosan (PCL/CS) fibrous mat as the sublayer and a polyurethane (PU) foam coated with ethanolic extract of propolis (EEP) as the top layer. By blending the solutions of PCL and CS, we fabricated an electrospun mat consisting of bead-free and uniform nanofibers with enhanced hydrophilicity, swelling ratio, and degradation properties. To further enhance the mechanical and antibacterial properties, we electrospun the PCL/CS solution on a PU foam coated with EEP to fabricate the PCL/CS-PU/EEP bilayer wound dressing.
View Article and Find Full Text PDFThree-dimensional (3D) bioprinting is an appealing and revolutionary manufacturing approach for the accurate placement of biologics, such as living cells and extracellular matrix (ECM) components, in the form of a 3D hierarchical structure to fabricate synthetic multicellular tissues. Many synthetic and natural polymers are applied as cell printing bioinks. One of them, alginate (Alg), is an inexpensive biomaterial that is among the most examined hydrogel materials intended for vascular, cartilage, and bone tissue printing.
View Article and Find Full Text PDFChitosan (CS) has gained particular attention in biomedical applications due to its biocompatibility, antibacterial feature, and biodegradability. Hence, many studies have focused on the manufacturing of CS films, scaffolds, particulate, and inks via different production methods. Nowadays, with the possibility of the precise adjustment of porosity size and shape, fiber size, suitable interconnectivity of pores, and creation of patient-specific constructs, 3D printing has overcome the limitations of many traditional manufacturing methods.
View Article and Find Full Text PDFIn this study porous gelatin scaffolds were prepared using in-situ gas foaming, and four crosslinking agents were used to determine a biocompatible and effective crosslinker that is suitable for such a method. Crosslinkers used in this study included: hexamethylene diisocyanate (HMDI), poly(ethylene glycol) diglycidyl ether (epoxy), glutaraldehyde (GTA), and genipin. The prepared porous structures were analyzed using Fourier Transform Infrared Spectroscopy (FT-IR), thermal and mechanical analysis as well as water absorption analysis.
View Article and Find Full Text PDFThe current study presents an effective and simple strategy to obtain stable porous scaffolds from gelatin via a gas foaming method. The technique exploits the intrinsic foaming ability of gelatin in the presence of CO2 to obtain a porous structure stabilised with glutaraldehyde. The produced scaffolds were characterised using physical and mechanical characterisation methods.
View Article and Find Full Text PDFDuring the last decades, there have been several attempts to combine bioactive materials with biocompatible and biodegradable polymers to create nanocomposite scaffolds with excellent biocompatibility, bioactivity, biodegradability and mechanical properties. In this research, the nanocomposite scaffolds with compositions based on PVA and HAp nanoparticles were successfully prepared using colloidal HAp nanoparticles combined with freeze-drying technique for tissue engineering applications. In addition, the effect of the pH value of the reactive solution and different percentages of PVA and HAp on the synthesis of PVA/HAp nanocomposites were investigated.
View Article and Find Full Text PDFIn this study, a nanostructured scaffold was designed for bone repair using hydroxyapatite (HA) and gelatin (GEL) as its main components. Nanopowders of HA were synthesized, and together with GEL, used to engineer a 3-dimensional nanocomposite combining 3 techniques of layer solvent casting, freeze-drying, and lamination. The results show that the scaffold possesses a 3-dimensional interconnected homogenous porous structure with a porosity of 82% and pore sizes ranging from 300 to 500 mum.
View Article and Find Full Text PDF