Clarifying the underlying mechanisms that govern ordering transitions in condensed matter systems is crucial for comprehending emergent properties and phenomena. While transitions are often classified as electronically driven or lattice-driven, we present a departure from this conventional picture in the case of the double perovskite BaMgReO. Leveraging resonant and non-resonant elastic x-ray scattering techniques, we unveil the simultaneous ordering of structural distortions and charge quadrupoles at a critical temperature of T ~ 33 K.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2021
The nature of order in low-temperature phases of some materials is not directly seen by experiment. Such "hidden orders" (HOs) may inspire decades of research to identify the mechanism underlying those exotic states of matter. In insulators, HO phases originate in degenerate many-electron states on localized f or d shells that may harbor high-rank multipole moments.
View Article and Find Full Text PDFThe transport properties of iron under Earth's inner core conditions are essential input for the geophysical modelling but are poorly constrained experimentally. Here we show that the thermal and electrical conductivity of iron at those conditions remains high even if the electron-electron-scattering (EES) is properly taken into account. This result is obtained by ab initio simulations taking into account consistently both thermal disorder and electronic correlations.
View Article and Find Full Text PDFA nearly free electron metal and a Mott insulating state can be thought of as opposite ends of the spectrum of possibilities for the motion of electrons in a solid. Understanding their interaction lies at the heart of the correlated electron problem. In the magnetic oxide metal PdCrO, nearly free and Mott-localized electrons exist in alternating layers, forming natural heterostructures.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2019
We discuss the role of dynamical many-electron effects in the physics of iron and iron-rich solid alloys under applied pressure on the basis of recent ab initio studies employing the dynamical mean-field theory (DMFT). We review in detail two particularly interesting regimes: first, a moderate pressure range up to 60 GPa and, second, the ultra-high pressure of about 360 GPa expected inside the solid inner core of Earth. Electronic correlations in iron under the moderate pressure of several tens GPa are discussed in the first section.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2015
We assess the reliability of the one-crossing approximation (OCA) approach in a quantitative description of the Mott transition in the framework of the dynamical mean field theory (DMFT). The OCA approach has been applied in conjunction with DMFT to a number of heavy-fermion, actinide, transition metal compounds and nanoscale systems. However, several recent studies in the framework of impurity models pointed out serious deficiencies of OCA and raised questions regarding its reliability.
View Article and Find Full Text PDFMetallic osmium (Os) is one of the most exceptional elemental materials, having, at ambient pressure, the highest known density and one of the highest cohesive energies and melting temperatures. It is also very incompressible, but its high-pressure behaviour is not well understood because it has been studied so far only at pressures below 75 gigapascals. Here we report powder X-ray diffraction measurements on Os at multi-megabar pressures using both conventional and double-stage diamond anvil cells, with accurate pressure determination ensured by first obtaining self-consistent equations of state of gold, platinum, and tungsten in static experiments up to 500 gigapascals.
View Article and Find Full Text PDFA quantum critical point arises at a continuous transformation between distinct phases of matter at zero temperature. Studies in antiferromagnetic heavy-fermion materials have revealed that quantum criticality has several classes, with an unconventional type that involves a critical destruction of the Kondo entanglement. To understand such varieties, it is important to extend the materials basis beyond the usual setting of intermetallic compounds.
View Article and Find Full Text PDFWe show that the heavy-fermion compound CeCu2Si2 undergoes a transition between two regimes dominated by different crystal-field states. At low pressure P and low temperature T the Ce 4f electron resides in the atomic crystal-field ground state, while at high P or T, the electron occupancy and spectral weight is transferred to an excited crystal-field level that hybridizes more strongly with itinerant states. These findings result from first-principles dynamical-mean-field-theory calculations.
View Article and Find Full Text PDFWe discover that hcp phases of Fe and Fe(0.9)Ni(0.1) undergo an electronic topological transition at pressures of about 40 GPa.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2013
By means of first principles simulations we demonstrate that tiny deviations from stoichiometry in the bulk composition of the NiPt-L1(0) ordered alloy have a great impact on the atomic configuration of the (111) surface. We predict that at T=600 K the (111) surface of the Ni51Pt49 and Ni50Pt50 alloys corresponds to the (111) truncation of the bulk L1(0) ordered structure. However, the (111) surface of the nickel deficient Ni49Pt51 alloy is strongly enriched by Pt and should exhibit the pattern of the 2x2 structure.
View Article and Find Full Text PDFThe phase diagram for the vacancy-ordered structures in the substoichiometric TiC(x) (x = 0.5-1.0) has been established from Monte Carlo simulations with the long-range pair and multisite effective interactions obtained from ab initio calculations.
View Article and Find Full Text PDF