In this study, the deep learning algorithm of Convolutional Neural Network long short-term memory (CNN-LSTM) is used to classify various jewelry rocks such as agate, turquoise, calcites, and azure from various historical periods and styles related to Shahr-e Sokhteh. Here, the CNN-LSTM architecture includes utilizing CNN layers for the extraction of features from input data mixed with LSTMs for supporting sequence forecasting. It should be mentioned that interpretable deep learning-assisted laser induced breakdown spectroscopy helped achieve excellent performance.
View Article and Find Full Text PDF