Publications by authors named "Poulter C"

Aims: To study the prevalence of cystic fibrosis related liver disease (CFLD) as defined by ultrasound (US) and describe difference in clinical and radiological features in those with CFLD and those without CFLD (nCFLD); with and without portal hypertension (PHT and nPHT).

Methods: Children with CF (CwCF) from our clinic who had regular screening liver US from 3 years of age were included. Liver parenchyma findings were classified into normal, homogeneous, heterogeneous and nodular.

View Article and Find Full Text PDF

Introduction: Bronchopulmonary dysplasia (BPD) is associated with adverse long-term respiratory and neurodevelopmental outcomes. No recent studies examined the changing respiratory management and outcomes, particularly severe BPD, across a whole population.

Purpose: Evaluate the temporal trends in the respiratory management and outcomes of preterm infants born below 32 weeks gestational age and develop an individualised dashboard of the incidence of neonatal outcome.

View Article and Find Full Text PDF

As survival of extremely preterm infants continues to improve, there is also an associated increase in bronchopulmonary dysplasia (BPD), one of the most significant complications of preterm birth. BPD development is multifactorial resulting from exposure to multiple antenatal and postnatal stressors. BPD has both short-term health implications and long-term sequelae including increased respiratory, cardiovascular, and neurological morbidity.

View Article and Find Full Text PDF

Linear triquinanes are sesquiterpene natural products with hydrocarbon skeletons consisting of three fused five-membered rings. Importantly, several of these compounds exhibit useful anticancer, anti-inflammatory, and antibiotic properties. However, linear triquinanes pose significant challenges to organic synthesis because of the structural and stereochemical complexity of their hydrocarbon skeletons.

View Article and Find Full Text PDF

Type 1 and type 2 isopentenyl diphosphate:dimethylallyl diphosphate isomerase (IDI-1 and IDI-2) catalyze the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), the fundamental building blocks for biosynthesis of isoprenoid compounds. Previous studies indicate that both isoforms of IDI catalyze isomerization by a protonation-deprotonation mechanism. IDI-1 and IDI-2 are "sluggish" enzymes with turnover times of ∼10 s and ∼1 s, respectively.

View Article and Find Full Text PDF

The amino acid sequences of farnesyl diphosphate synthase (FPPase) and chrysanthemyl diphosphate synthase (CPPase) from Artemisia tridentata ssp. Spiciformis, minus their chloroplast targeting regions, are 71% identical and 90% similar. FPPase efficiently and selectively synthesizes the "regular" sesquiterpenoid farnesyl diphosphate (FPP) by coupling isopentenyl diphosphate (IPP) to dimethylallyl diphosphate (DMAPP) and then to geranyl diphosphate (GPP).

View Article and Find Full Text PDF

IspH, also called LytB, a protein involved in the biosynthesis of isoprenoids through the methylerythritol phosphate pathway, is an attractive target for the development of new antimicrobial drugs. Here, we report crystal structures of Escherichia coli IspH in complex with the two most potent inhibitors: (E)-4-mercapto-3-methylbut-2-en-1-yl diphosphate (TMBPP) and (E)-4-amino-3-methylbut-2-en-1-yl diphosphate (AMBPP) at 1.95 and 1.

View Article and Find Full Text PDF

Terpenoid synthases create diverse carbon skeletons by catalyzing complex carbocation rearrangements, making them particularly challenging for enzyme function prediction. To begin to address this challenge, we have developed a computational approach for the systematic enumeration of terpenoid carbocations. Application of this approach allows us to systematically define a nearly complete chemical space for the potential carbon skeletons of products from monoterpenoid synthases.

View Article and Find Full Text PDF

Type 2 isopentenyl diphosphate:dimethylallyl diphosphate isomerase (IDI-2) catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) in the isoprenoid biosynthetic pathway. The enzyme from Streptomyces pneumoniae (spIDI-2) is a homotetramer in solution with behavior, including a substantial increase in the rate of FMN reduction by NADPH in the presence of IPP, suggesting that substrate binding at one subunit alters the kinetic and binding properties of another. We now report the construction of catalytically active monomeric spIDI-2.

View Article and Find Full Text PDF

Flavin mononucleotide (FMN) is a coenzyme for numerous proteins involved in key cellular and physiological processes. Isotopically labeled flavin is a powerful tool for studying the structure and mechanism of flavoenzyme-catalyzed reactions by a variety of techniques, including NMR, IR, Raman, and mass spectrometry. In this report, we describe the preparation of labeled FMN isotopologues enriched with (15)N and (13)C isotopes at various sites in the pyrazine and pyrimidine rings of the isoalloxazine core of the cofactor from readily available precursors by a five-step chemo-enzymatic synthesis.

View Article and Find Full Text PDF

Chain elongation prenyltransferases catalyze the addition of the hydrocarbon moiety of allylic isoprenoid diphosphates to the carbon-carbon double bond in isopentenyl diphosphate (IPP) in the primary building reactions in the isoprenoid biosynthetic pathway. Bis-O-diphosphate analogues 3-OPP/OPP, 4-OPP/OPP, and 5-OPP/OPP and bis-thiolodiphosphate bisubstrate analogues 3-SPP/SPP, 4-SPP/SPP, and 5-SPP/SPP were synthesized. The analogues 4-OPP/OPP, 5-OPP/OPP, 4-SPP/SPP, and 5-SPP/SPP were excellent competitive inhibitors of avian farnesyl diphosphate synthase with KI = 1.

View Article and Find Full Text PDF

Type 2 isopentenyl diphosphate:dimethylallyl diphosphate isomerase (IDI-2) converts isopentenyl diphosphate (IPP) to dimethylallyl diphosphate (DMAPP), the two fundamental building blocks of isoprenoid molecules. IDI-2 is found in many species of bacteria and is a potential antibacterial target since this isoform is non-homologous to the type 1 enzyme in Homo sapiens. IDI-2 requires a reduced flavin mononucleotide to form the catalytically active ternary complex, IDI-2·FMNH2·IPP.

View Article and Find Full Text PDF

Squalene (SQ) is a key intermediate in hopanoid biosynthesis. Many bacteria synthesize SQ from farnesyl diphosphate (FPP) in three steps: FPP to (1R,2R,3R)-presqualene diphosphate (PSPP), (1R,2R,3R)-PSPP to hydroxysqualene (HSQ), and HSQ to SQ. Chemical, biochemical, and spectroscopic methods were used to establish that HSQ synthase synthesizes (S)-HSQ.

View Article and Find Full Text PDF

Squalene (SQ) is an intermediate in the biosynthesis of sterols in eukaryotes and a few bacteria and of hopanoids in bacteria where they promote membrane stability and the formation of lipid rafts in their hosts. The genes for hopanoid biosynthesis are typically located on clusters that consist of four highly conserved genes-, , , and -for conversion of farnesyl diphosphate (FPP) to hopene or related pentacyclic metabolites. While is known to encode a squalene cyclase, the functions for , , and are not rigorously established.

View Article and Find Full Text PDF

The LytB/IspH protein catalyzes the last step of the methylerythritol phosphate (MEP) pathway which is used for the biosynthesis of essential terpenoids in most pathogenic bacteria. Therefore, the MEP pathway is a target for the development of new antimicrobial agents as it is essential for microorganisms, yet absent in humans. Substrate-free LytB has a special [4Fe-4S](2+) cluster with a yet unsolved structure.

View Article and Find Full Text PDF

Terpenoids are a large structurally diverse group of natural products with an array of functions in their hosts. The large amount of genomic information from recent sequencing efforts provides opportunities and challenges for the functional assignment of terpene synthases that construct the carbon skeletons of these compounds. Inferring function from the sequence and/or structure of these enzymes is not trivial because of the large number of possible reaction channels and products.

View Article and Find Full Text PDF

Farnesyl diphosphate synthase catalyzes the sequential chain elongation reactions between isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) to form geranyl diphosphate (GPP) and between IPP and GPP to give farnesyl diphosphate (FPP). Bisubstrate analogues containing the allylic and homoallylic substrates were synthesized by joining fragments for IPP and the allylic diphosphates with a C-C bond between the methyl group at C3 in IPP and the Z-methyl group at C3 in DMAPP (3-OPP) and GPP (4-OPP), respectively. These constructs placed substantial limits on the conformational space available to the analogues relative to the two substrates.

View Article and Find Full Text PDF

Terpenoid synthases construct the carbon skeletons of tens of thousands of natural products. To predict functions and specificity of triterpenoid synthases, a mechanism-based, multi-intermediate docking approach is proposed. In addition to enzyme function prediction, other potential applications of the current approach, such as enzyme mechanistic studies and enzyme redesign by mutagenesis, are discussed.

View Article and Find Full Text PDF

The methylerythritol phosphate biosynthetic pathway, found in most Bacteria, some parasitic protists, and plant chloroplasts, converts D-glyceraldehyde phosphate and pyruvate to isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), where it intersects with the mevalonate pathway found in some Bacteria, Archaea, and Eukarya, including the cytosol of plants. D-3-Methylerythritol-4-phosphate (MEP), the first pathway-specific intermediate in the pathway, is converted to IPP and DMAPP by the consecutive action of the IspD-H proteins. We synthesized five D-MEP analogues-D-erythritol-4-phosphate (EP), D-3-methylthrietol-4-phosphate (MTP), D-3-ethylerythritol-4-phosphate (EEP), D-1-amino-3-methylerythritol-4-phosphate (NMEP), and D-3-methylerythritol-4-thiolophosphate (MESP)-and studied their ability to function as alternative substrates for the reactions catalyzed by the IspDF fusion and IspE proteins from Agrobacterium tumefaciens, which covert MEP to the corresponding eight-membered cyclic diphosphate.

View Article and Find Full Text PDF

Isopentenyl diphosphate isomerase (IDI) is a key enzyme in the isoprenoid biosynthetic pathway and is required for all organisms that synthesize isoprenoid metabolites from mevalonate. Type 1 IDI (IDI-1) is a metalloprotein that is found in eukaryotes, whereas the type 2 isoform (IDI-2) is a flavoenzyme found in bacteria that is completely absent from human. IDI-2 from the pathogenic bacterium Streptococcus pneumoniae was recombinantly expressed in Escherichia coli.

View Article and Find Full Text PDF

Background: General practice requires systems to deal with patients presenting with urgent needs. BeAWARE was developed to support non-clinical staff to promptly identify patients with symptoms of heart attack or stroke.

Methods: Data were collected from May 2012 to December 2012 on participants completing the BeAWARE learning module, including pre- and post-assessments on knowledge, confidence and intended action.

View Article and Find Full Text PDF

Antibody arrays are a useful for detecting antigens and other antibodies. This technique typically requires a uniform and well-defined orientation of antibodies attached to a surface for optimal performance. A uniform orientation can be achieved by modification of antibodies to include a single site for attachment.

View Article and Find Full Text PDF

The biosynthetic pathways to isoprenoid compounds involve transfer of the prenyl moiety in allylic diphosphates to electron-rich (nucleophilic) acceptors. The acceptors can be many types of nucleophiles, while the allylic diphosphates only differ in the number of isoprene units and stereochemistry of the double bonds in the hydrocarbon moieties. Because of the wide range of nucleophilicities of naturally occurring acceptors, the mechanism for prenyltransfer reactions may be dissociative or associative with early to late transition states.

View Article and Find Full Text PDF

Type-2 isopentenyl diphosphate isomerase (IDI-2) is a key flavoprotein involved in the biosynthesis of isoprenoids. Since fully reduced flavin mononucleotide (FMNH2) is needed for activity, it was decided to crystallize the enzyme under anaerobic conditions in order to understand how this reduced cofactor binds within the active site and interacts with the substrate isopentenyl diphosphate (IPP). In this study, the protein was expressed and purified under aerobic conditions and then reduced and crystallized under anaerobic conditions.

View Article and Find Full Text PDF