Publications by authors named "Poulikakos L D"

Using data on in situ performance of low noise pavements, three well performing mixtures were selected: SDA 4, SDA 6, and SDA 8. These mixtures and the corresponding mastic (filler + bitumen + additive) were tested for their mechanical and acoustic performance in non-aged and aged states using a multi-scale approach (mm to km). Thereafter, an optimization protocol was applied to these mastics (mm-scale) and promising combinations were implemented at the mixture scale (cm-scale).

View Article and Find Full Text PDF

The construction of pavements incorporating reclaimed asphalt pavement (RAP) is taking place around the world, implying the necessity to quantify their net environmental impacts. Life cycle assessment (LCA) is a popular method to analyze the environmental impacts of a product along the whole value chain, providing guidance to practices and technologies from environmental perspectives. However, the LCA research of RAP-modified pavement is seldom performed in Brazil.

View Article and Find Full Text PDF

Noise mitigation is the main advantage of semi-dense asphalt (SDA) pavements compared to traditional pavements such as stone-mastic asphalt (SMA), but noise is not quantitatively considered in traditional life cycle assessment (LCA). This article performs a comprehensive LCA for SMA and SDA including noise considerations. State-of-the-art sound emission and acoustical ageing models were used to determine the road traffic noise.

View Article and Find Full Text PDF

Incorporating crumb rubber (CR) using the dry process, directly in the asphalt mixture rather than into the bituminous binder requires no plant retrofitting, and therefore is the most practical industrial method for CR incorporation into asphalt mixtures. Nevertheless, very few large scale studies have been conducted. This work uses a holistic approach and reports on the functional and environmental performance of asphalt mixtures with different concentrations of CR fabricated employing the dry process in asphalt plants.

View Article and Find Full Text PDF

An external load on a particle packing is distributed internally through a heterogeneous network of particle contacts. This contact force distribution determines the stability of the particle packing and the resulting structure. Here, we investigate the homogeneity of the contact force distribution in packings of highly nonconvex particles both in two-dimensional (2D) and three-dimensional (3D) packings.

View Article and Find Full Text PDF

Bitumen is a widely used material employed as a binder in pavement engineering and as a surface sealant in construction. Its surface microstructure and microscale properties have been shown to be temperature-dependent, with effects manifesting themselves on surface composition and texture, including the formation of the visually striking catana 'bee'-like structures. Despite the importance of a good performance of bitumen in subzero environments (<0°C), the behaviour of bitumen surface texture and composition at cold temperatures, affecting cracking, degradation and road icing, has received practically no attention.

View Article and Find Full Text PDF

As the use of warm and cold asphalt mixing technologies provides an opportunity to save energy during production, it is important to determine if this lower mixing temperature also has a long-term effect on the binder chemical and rheological properties and performance. In this study, a link between the chemistry and rheology of bituminous binders with a focus on short-term aging temperature is proposed. This link is made using a rheological aging index (RAI), the crossover temperature and a chemical aging index (CAI).

View Article and Find Full Text PDF

When producing asphalt concrete mixture with high amounts of reclaimed asphalt pavement (RAP), the mixing temperature plays a significant role in the resulting spatial distribution of the components as well as on the quality of the resulting mixture, in terms of workability during mixing and compaction as well as in service mechanical properties. Asphalt concrete containing 50% RAP was investigated at mixing temperatures of 140, 160 and 180°C, using a multiscale approach. At the microscale, using energy dispersive X-ray spectroscopy the RAP binder film thickness was visualized and measured.

View Article and Find Full Text PDF

Porous asphalt as a road surface layer controls aquaplaning as rain water can drain through its highly porous structure. The process of water drainage through this permeable layer is studied using neutron radiography. Time-resolved water configuration and distribution within the porous structure are reported.

View Article and Find Full Text PDF

Direct observations of porous asphalt concrete samples in their natural state using optical and electron microscopy techniques led to useful information regarding the microstructure of two mixes and indicated a relationship between microstructure and in situ performance. This paper presents evidence that suboptimal microstructure can lead to premature failure thus making a first step in defining well or suboptimal performing pavements with a bottom-up approach (microstructure). Laboratory and field compaction produce different samples in terms of the microstructure.

View Article and Find Full Text PDF