Publications by authors named "Poulain A"

A promising superparamagnetic nanomagnetite dipped with Gd was synthesized for possible medical applications. Its size and morphology are independent of Gd content ranging from 1 to 5%. Gadolinium (III) replaced Fe(III) in the lattice.

View Article and Find Full Text PDF

Bumblebees are key pollinators with gut microbiotas that support host health. After bumblebee queens undergo winter diapause, which occurs before spring colony establishment, their gut microbiotas are disturbed, but little is known about community dynamics during diapause itself. Queen gut microbiotas also help seed worker microbiotas, so it is important that they recover post-diapause to a typical community structure, a process that may be impeded by pesticide exposure.

View Article and Find Full Text PDF

Social bees are frequently exposed to pesticides when foraging on nectar and pollen. Recent research has shown that pesticide exposure not only impacts social bee host health but can also alter the community structure of social bee gut microbiotas. However, most research on pesticide-bee gut microbiota interactions has been conducted in honey bees; bumble bees, native North American pollinators, have received less attention and, due to differences in their ecology, may be exposed to certain pesticides for shorter durations than honey bees.

View Article and Find Full Text PDF

The production of methylmercury (MeHg) in flooded paddy fields determines its accumulation in rice grains; this, in turn, results in MeHg exposure risks for not only rice-eating humans but also wildlife. Nitrogen (N) fertilizers have been widely applied in rice cultivation fields to supply essential nutrients. However, the effects of N fertilizer addition on mercury (Hg) transformations are not unclear.

View Article and Find Full Text PDF

Methylmercury (MeHg) is a microbially produced neurotoxin derived from inorganic mercury (Hg), which accumulation in rice represents a major health concern to humans. However, the microbial control of MeHg dynamics in the environment remains elusive. Here, leveraging three rice paddy fields with distinct concentrations of Hg (Total Hg (THg): 0.

View Article and Find Full Text PDF

Methylmercury (MeHg) contamination in rice via paddy soils is an emerging global environmental issue. An understanding of mercury (Hg) transformation processes in paddy soils is urgently needed in order to control Hg contamination of human food and related health impacts. Sulfur (S)-regulated Hg transformation is one important process that controls Hg cycling in agricultural fields.

View Article and Find Full Text PDF

Past and present anthropogenic mercury (Hg) release to ecosystems causes neurotoxicity and cardiovascular disease in humans with an estimated economic cost of $117 billion USD annually. Humans are primarily exposed to Hg via the consumption of contaminated freshwater and marine fish. The UNEP Minamata Convention on Hg aims to curb Hg release to the environment and is accompanied by global Hg monitoring efforts to track its success.

View Article and Find Full Text PDF

Mine tailings are prevalent worldwide and can adversely impact adjacent ecosystems, including wetlands. This study investigated the impact of gold (Au) mine tailings contamination on peatland soil and pore water geochemistry, vegetation and microbial communities, and microbial carbon (C) cycling. Maximum arsenic (As) concentrations in peat and pore water reached 20,137 mg kg and 16,730 μg L, respectively, but decreased by two orders of magnitude along a 128 m gradient extending from the tailings into the wetland.

View Article and Find Full Text PDF

The glymphatic system is the subject of numerous pieces of research in biology. Mathematical modelling plays a considerable role in this field since it can indicate the possible physical effects of this system and validate the biologists' hypotheses. The available mathematical models that describe the system at the scale of the brain (i.

View Article and Find Full Text PDF

The host spectrum of viruses is quite diverse, as they can sustainedly infect a few species to several phyla. When confronted with a new host, a virus may even infect it and transmit sustainably in this new host, a process called 'viral spillover'. However, the risk of such events is difficult to quantify.

View Article and Find Full Text PDF

The mobility of Se, a fission product of U and long-lived radioisotope, is an important parameter in the safety assessment of radioactive nuclear waste disposal systems. Nonradioactive selenium is also an important contaminant of drainage waters from black shale mountains and coal mines. Highly mobile and soluble in its high oxidation states, selenate (Se()O) and selenite (Se()O) oxyanions can interact with magnetite, a mineral present in anoxic natural environments and in steel corrosion products, thereby being reduced and consequently immobilized by forming low-solubility solids.

View Article and Find Full Text PDF

Microbe-mediated transformations of arsenic (As) often require As to be taken up into cells prior to enzymatic reaction. Despite the importance of these microbial reactions for As speciation and toxicity, understanding of how As bioavailability and uptake are regulated by aspects of extracellular water chemistry, notably dissolved organic matter (DOM), remains limited. Whole-cell biosensors utilizing fluorescent proteins are increasingly used for high-throughput quantification of the bioavailable fraction of As in water.

View Article and Find Full Text PDF

The contamination of lakes by industrial emissions is an issue of international concern. Traditional paleolimnology examines sedimentary micro-fossils to infer the biological response to natural and anthropogenic stressors over time. Here, we calculate a theoretical biological effect for historic sediment sections using Probable Effect Concentration Quotient (PEC-Q) and arsenic specific quotient methods and develop novel time-constrained sediment toxicity test methods using a cultured Daphnia sp.

View Article and Find Full Text PDF

This study aims to investigate methylmercury (MeHg) demethylation processes in human gut. Here, we determined the compositions and MeHg demethylation rates of gut microbiota in residents from different Hg exposure levels (Wanshan (WS) town and Yangtou (YT) town) and different Hg exposure sources (Zhuchang (ZC) town and YT town) regions. MeHg and inorganic Hg exposure levels in residents of WS town were significantly higher than those of YT and ZC town.

View Article and Find Full Text PDF

Soil microbial communities are critical for maintaining terrestrial ecosystems and fundamental ecological processes. Mercury (Hg) is a heavy metal that is toxic to microorganisms, but its effects on microbial community assembly and ecosystem multifunctionality in rice paddy ecosystems remain largely unknown. In the current study, we analyzed the microbial community structure and ecosystem multifunctionality of paddy soils across a Hg contamination gradient.

View Article and Find Full Text PDF

Methylmercury is a potent neurotoxin that biomagnifies through food webs and which production depends on anaerobic microbial uptake of inorganic mercury (Hg) species. One outstanding knowledge gap in understanding Hg methylation is the nature of bioavailable Hg species. It has become increasingly obvious that Hg bioavailability is spatially diverse and temporally dynamic but current models are mostly built on single thiolated ligand systems, omitting ligand exchanges and interactions, or the inclusion of dissolved gaseous phases.

View Article and Find Full Text PDF

Social bee gut microbiotas play key roles in host health and performance. Worryingly, a growing body of literature shows that pesticide exposure can disturb these microbiotas. Most studies examine changes in taxonomic composition in Western honey bee (Apis mellifera) gut microbiotas caused by insecticide exposure.

View Article and Find Full Text PDF

Microbial bioreporters provide direct insight into cellular processes by producing a quantifiable signal dictated by reporter gene expression. The core of a bioreporter is a genetic circuit in which a reporter gene (or operon) is fused to promoter and regulatory sequences that govern its expression. In this study, we develop a system for constructing novel Escherichia coli bioreporters based on Golden Gate assembly, a synthetic biology approach for the rapid and seamless fusion of DNA fragments.

View Article and Find Full Text PDF

Rice consumption is the major pathway for human methylmercury (MeHg) exposure in inland China, especially in mercury (Hg) contaminated regions. MeHg production, a microbially driven process, depends on both the chemical speciation of inorganic divalent mercury, Hg(II), that determines Hg bioavailability for methylation. Studies have shown that Hg(II) speciation in contaminated paddy soils is mostly controlled by natural organic matter and sulfide levels, which are typically thought to limit Hg mobility and bioavailability.

View Article and Find Full Text PDF

Motivated by experimental observations in 3D/organoid cultures derived from glioblastoma, we propose a novel mechano-transduction mechanism where the introduction of a chemotherapeutic treatment induces mechanical changes at the cell level. We analyse the influence of these individual mechanical changes on the properties of the aggregates obtained at the population level. We employ a nonlinear volume-filling chemotactic system of partial differential equations, where the elastic properties of the cells are taken into account through the so-called squeezing probability, which depends on the concentration of the treatment in the extracellular microenvironment.

View Article and Find Full Text PDF

Smelting activities at Giant Mine (Yellowknife, NWT, Canada) have resulted in high sulfate and arsenic concentrations in nearby lakes. Here we tested whether historic smelting affects current mercury (Hg) cycling in 35 freshwater lakes over a 2800 km area around the former gold mine. We sampled lake water and sediment over three consecutive years (2015-2017) using a factorial sampling design that accounted for different environmental variables known to affect the net methylmercury (MeHg) levels in water.

View Article and Find Full Text PDF

Mercury (Hg) is a global pollutant and potent neurotoxin that bioaccumulates in food webs as monomethylmercury (MeHg). The production of MeHg is driven by anaerobic and Hg redox cycling pathways, such as Hg reduction, which control the availability of Hg to methylators. Anaerobes play an important role in Hg reduction in methylation hot spots, yet their contributions remain underappreciated due to how challenging these pathways are to study in the absence of dedicated genetic targets and low levels of Hg in anoxic environments.

View Article and Find Full Text PDF

Sediment lyophilization is a common process that allows for long-term conservation and sharing of marine sediments for multiple downstream analyses. Although it is often used for geochemical studies, the effects of lyophilization on prokaryotic taxonomic diversity assessment remained to be assessed. Here, we tested the effect of lyophilization on microbial diversity assessment using three sediment layers corresponding to various sediment ages and chemical contamination levels sampled from a marine Mediterranean harbor.

View Article and Find Full Text PDF

Efficient hydrogen release from liquid organic hydrogen carriers (LOHCs) requires a high level of control over the catalytic properties of supported noble metal nanoparticles. Here, the formation of carbon-containing phases under operation conditions has a direct influence on the activity and selectivity of the catalyst. We studied the formation and stability of carbide phases using well-defined Pd/α-Al2O3(0001) model catalysts during dehydrogenation of a model LOHC, methylcyclohexane, in a flow reactor by in situ high-energy grazing incidence X-ray diffraction.

View Article and Find Full Text PDF

Temperatures in the Arctic are expected to increase dramatically over the next century, and transform high latitude watersheds. However, little is known about how microbial communities and their underlying metabolic processes will be affected by these environmental changes in freshwater sedimentary systems. To address this knowledge gap, we analyzed sediments from Lake Hazen, NU Canada.

View Article and Find Full Text PDF