Publications by authors named "Pouckova P"

Photodynamic therapy (PDT) has the potential to cure pancreatic cancer with minimal side effects. Visible wavelengths are primarily used to activate hydrophobic photosensitizers, but in clinical practice, these wavelengths do not sufficiently penetrate deeper localized tumor cells. In this work, NaYF:Yb,Er,Fe upconversion nanoparticles (UCNPs) were coated with polymer and labeled with -tetra(hydroxyphenyl)chlorin (mTHPC; temoporfin) to enable near-infrared light (NIR)-triggered PDT of pancreatic cancer.

View Article and Find Full Text PDF

Proteinase-activated receptors (PARs) were discovered more than 25 years ago and since then, their role in cancer has been under investigation. Research has primarily focused on the receptors located on the membrane of cancer cells and their impact on metabolism, intracellular signalling, and proliferation. Regarding the host response to cancer, studies have predominantly examined the relationship of thrombin receptors (PAR-1, PAR-3, and PAR-4) with blood clotting in distant metastatic spread.

View Article and Find Full Text PDF

This updated review aims to describe the current status in the development of liposome-based systems for the targeted delivery of phthalocyanines for photodynamic therapy (PDT). Although a number of other drug delivery systems (DDS) can be found in the literature and have been studied for phthalocyanines or similar photosensitizers (PSs), liposomes are by far the closest to clinical practice. PDT itself finds application not only in the selective destruction of tumour tissues or the treatment of microbial infections, but above all in aesthetic medicine.

View Article and Find Full Text PDF

Iron and copper are essential micronutrients needed for the proper function of every cell. However, in excessive amounts, these elements are toxic, as they may cause oxidative stress, resulting in damage to the liver and other organs. This may happen due to poisoning, as a side effect of thalassemia infusion therapy or due to hereditary diseases hemochromatosis or Wilson's disease.

View Article and Find Full Text PDF

The delivery of therapeutics into sites of action by using cargo-delivery platforms potentially minimizes their premature degradation and fast clearance from the bloodstream. Additionally, drug-loaded stimuli-responsive supramolecular assemblies can be produced to respond to the inherent features of tumor microenvironments, such as extracellular acidosis. We report in this framework the use of pH-responsive polymersomes (PSs) manufactured using poly([N-(2-hydroxypropyl)] methacrylamide)-b-poly[2-(diisopropylamino)ethyl methacrylate] as the building unit (PHPMA-b-PDPA).

View Article and Find Full Text PDF

Hydrogels based on natural and modified polysaccharides represent growing group of suitable matrices for the construction of effective wound healing materials. Bioactive tripeptide glycyl-l-histidyl-l-lysine and amino acid α-l-arginine are known to accelerate wound healing and skin repair. In this study, hydrogels based on low-methoxyl amidated citrus pectin or flaxseed gum were prepared and used for the transport of these healing agents to the experimental cutting wounds affected by extensive skin damage.

View Article and Find Full Text PDF

Based on their field of application, the physical parameters of shock waves differ. Experiments referred to in this article used tandem shock waves generated on the surface of a composite anode. There, individual pores of the anode produce multichannel discharges.

View Article and Find Full Text PDF

The lack of cellular and tissue specificities in conventional chemotherapies along with the generation of a complex tumor microenvironment (TME) limits the dosage of active agents that reaches tumor sites, thereby resulting in ineffective responses and side effects. Therefore, the development of selective TME-responsive nanomedicines is of due relevance toward successful chemotherapies, albeit challenging. In this framework, we have synthesized novel, ready-to-use ROS-responsive amphiphilic block copolymers (BCs) with two different spacer chemistry designs to connect a hydrophobic boronic ester-based ROS sensor to the polymer backbone.

View Article and Find Full Text PDF

This report describes the design, synthesis and evaluation of tumor-targeted polymer probes to visualize epidermal growth factor receptor (EGFR)-positive malignant tumors for successful resection via fluorescence guided endoscopic surgery. Fluorescent polymer probes of various molecular weights enabling passive accumulation in tumors via enhanced permeability and retention were prepared and evaluated, showing an optimal molecular weight of 200,000 g/mol for passive tumor targeting. Moreover, poly(-(2-hydroxypropyl)methacrylamide)-based copolymers labeled with fluorescent dyes were targeted with the EGFR-binding oligopeptide GE-11 (YHWYGYTPQNVI), human EGF or anti-EGFR monoclonal antibody cetuximab were all able to actively target the surface of EGFR-positive tumor cells.

View Article and Find Full Text PDF

Background/aim: Follicle-stimulating hormone receptor (FSHr), expressed on endothelial cells of vessels in different malignant tumors, has been recently investigated as a potential pan-receptor of cancer treatment. However, the expression of this receptor has also been confirmed in other tissues under pathological conditions including cancer. The aim of the presented pilot study was to evaluate the expression of FSHr in head and neck squamous cancer (HNSCC).

View Article and Find Full Text PDF

The focus of this review is to describe the state-of-art in the development of innovative drug delivery systems for phthalocyanines as photosensitizers for photodynamic therapy (PDT). PDT is a medical treatment combining photosensitizers (PSs) activated by visible light of a specific wavelength to selectively destroy targeted cells, tumor tissues and its surrounding vasculature. In the last decades, PDT has been under intense investigation, first as a promising alternative approach for improved cancer treatment, later against microbial infection and nowadays, mainly in aesthetic medicine, against age-related degeneration.

View Article and Find Full Text PDF

Polyester-based nanostructures are widely studied as drug-delivery systems due to their biocompatibility and biodegradability. They are already used in the clinic. In this work, we describe a new and simple biodegradable and biocompatible system as the Food and Drug Administration approved polyesters (poly-ε-caprolactone, polylactic acid, and poly(lactic- co-glycolic acid)) for the delivery of the anticancer drug paclitaxel (PTX) as a model drug.

View Article and Find Full Text PDF
Article Synopsis
  • Wilson's disease is a genetic disorder that leads to harmful copper build-up in the body, mainly affecting the liver and nervous system, and current treatments have unpleasant side effects.
  • Researchers developed a new therapy using chemically modified biopolymer carriers (microcrystalline cellulose and chitosan) that contain a copper-specific chelator, 8-hydroxyquinoline, which helps remove excess copper from the body during digestion.
  • Testing on Wistar rats showed that these modified polymer carriers effectively blocked copper absorption from food, keeping copper primarily in the gastrointestinal tract and reducing its harmful effects on internal organs.
View Article and Find Full Text PDF

Background: Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site became a new standard in novel anticancer methods Anticancer photodynamic therapy also takes benefit from using nanoparticles by means of increasing targeting efficiency and decreased side effect. With this in mind, the silica-based nanoparticles, as drug delivery systems for the second-generation photosensitizer 5,10,15,20-tetrakis(m-hydroxyphenyl) chlorin (temoporfin) were developed.

Methods: In order to determine the stability and therapeutic performance of the selected nanomaterials in physiological fluids, their physicochemical properties (i.

View Article and Find Full Text PDF

Cancer incidence is rising and this global challenge is further exacerbated by tumour resistance to available medicines. A promising approach to meet the need for improved cancer treatment is drug repurposing. Here we highlight the potential for repurposing disulfiram (also known by the trade name Antabuse), an old alcohol-aversion drug that has been shown to be effective against diverse cancer types in preclinical studies.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) has garnered immense attention as a minimally invasive clinical treatment modality for malignant cancers. However, its low penetration depth and photodamage of living tissues by UV and visible light, which activate a photosensitizer, limit the application of PDT. In this study, monodisperse NaYF :Yb /Er nanospheres 20 nm in diameter, that serve as near-infrared (NIR)-to-visible light converters and activators of a photosensitizer, were synthesized by high-temperature co-precipitation of lanthanide chlorides in a high-boiling organic solvent (octadec-1-ene).

View Article and Find Full Text PDF

Survivin, an important antiapoptotic protein, is expressed in tumors, whereas in normal tissues the expression of this protein is extremely low, defining a role for survivin as a cancer gene. Survivin exhibits multifunctional activity in tumor cells. However, why survivin expression is sharply and invariably restricted to tumor tissue remains unclear.

View Article and Find Full Text PDF

A novel pentamethinium salt was synthesized with an unforeseen expanded conjugated quinoxaline unit directly incorporated into a pentamethinium chain. The compound exhibited high fluorescence intensity, selective mitochondrial localization, high cytotoxicity, and selectivity toward malignant cell lines, and resulted in remarkable in vivo suppression of tumor growth in mice.

View Article and Find Full Text PDF

In this work, we studied indolium and benzothiazolium pentamethine salts 1-3 as novel type of receptors for the recognition of sulphated signalling molecules (sulphated steroids: oestrone, pregnenolone and cholesterol sulphate). A recognition study was performed in an aqueous medium (1mM phosphate buffer (H2O:MeOH; 99:1 (v/v))) at pH 7.34.

View Article and Find Full Text PDF

Shock waves can cause significant cytotoxic effects in tumor cells and tissues both in vitro and in vivo. However, understanding the mechanisms of shock wave interaction with tissues is limited. We have studied in vivo effects of focused shock waves induced in the syngeneic sarcoma tumor model using the TUNEL assay, immunohistochemical detection of caspase-3 and hematoxylin-eosin staining.

View Article and Find Full Text PDF

Auger electrons-emitting radioisotopes (such as iodine-125) are a potentially effective cancer treatment. They are extremely biologically effective, but only within a short range (nanometers). Their use as an effective cancer therapy requires that they will be transported within close proximity of DNA by an intercalator, where they induce double-strand breaks leading to cell death.

View Article and Find Full Text PDF

Aim: We investigated differences of metastatic spread of normal proteinase-activated receptor-2 (Par2+/+) melanoma B16 in Par2-/- (knock-out) animals compared to C57Bl6 mice.

Materials And Methods: Nine knock-out mice B6.Cg-F2rl1tm1Mslb/J (Par2-/-) and nine C57Bl6/J controls were subcutaneously inoculated with B16 melanoma tissue cells.

View Article and Find Full Text PDF

Wilson's disease is a genetic disorder caused by a malfunction of ATPase 7B that leads to high accumulation of copper in the organism and consequent toxic effects. We propose a gentle therapy to eliminate the excessive copper content with oral administration of insoluble non-resorbable polymer sorbents containing selective chelating groups for copper(II). Polymeric beads with the chelating agents triethylenetetramine, N,N-di(2-pyridylmethyl)amine, and 8-hydroxyquinoline (8HQB) were investigated.

View Article and Find Full Text PDF

Background: Clinically-approved anticancer photodynamic therapy (PDT) is now extensively studied for various cancer diagnoses. We focused on the treatment efficacy of topical administration of hydroxy-aluminum phthalocyanine (AlOH-PC) entrapped in liposomes against in vivo models of prostate carcinomas.

Materials And Methods: LNCaP and PC3 cells were subcutaneously injected into the right flank of athymic nude mice.

View Article and Find Full Text PDF

Background: Photodynamic therapy (PDT) is a clinically-accepted approach for the therapy of many types of cancer. This study focused on the treatment of mammarian carcinoma by topical administration of hydroxyl-aluminium phthalocyanine (AlOH-PC), compared to a clinically-approved photosensitizer (Metvix, Galderma & PhotoCure ASA, Inc., Oslo, Norway).

View Article and Find Full Text PDF