Publications by authors named "Pothur Srinivas"

Exposure of biological systems to acute or chronic insults triggers a host of molecular and physiological responses to either tolerate, adapt, or fully restore homeostasis; these responses constitute the hallmarks of resilience. Given the many facets, dimensions, and discipline-specific focus, gaining a shared understanding of "resilience" has been identified as a priority for supporting advances in cardiovascular health. This report is based on the working definition: "Resilience is the ability of living systems to successfully maintain or return to homeostasis in response to physical, molecular, individual, social, societal, or environmental stressors or challenges," developed after considering many factors contributing to cardiovascular resilience through deliberations of multidisciplinary experts convened by the National Heart, Lung, and Blood Institute during a workshop entitled: "Enhancing Resilience for Cardiovascular Health and Wellness.

View Article and Find Full Text PDF

While conventional nutrition research has yielded biomarkers such as doubly labeled water for energy metabolism and 24-h urinary nitrogen for protein intake, a critical need exists for additional, equally robust biomarkers that allow for objective assessment of specific food intake and dietary exposure. Recent advances in high-throughput MS combined with improved metabolomics techniques and bioinformatic tools provide new opportunities for dietary biomarker development. In September 2018, the NIH organized a 2-d workshop to engage nutrition and omics researchers and explore the potential of multiomics approaches in nutritional biomarker research.

View Article and Find Full Text PDF

Cardiovascular diseases remain the leading cause of mortality and a major contributor to preventable deaths worldwide. The dominant modifiable risk factors and the social and environmental determinants that increase cardiovascular risk are known, and collectively, are as important in racial and ethnic minority populations as they are in majority populations. Their prevention and treatment remain the foundation for cardiovascular health promotion and disease prevention.

View Article and Find Full Text PDF

As we commemorate the 70 Anniversary of the National Heart, Lung, and Blood Institute (NHLBI) and celebrate important milestones that have been achieved by the Division of Cardiovascular Sciences (DCVS), it is imperative that DCVS and the Extramural Research community at-large continue to address critical public health challenges that persist within the area of Cardiovascular Diseases (CVD). The NHLBI's Strategic Vision, developed with extensive input from the extramural research community and published in 2016, included overarching goals and strategic objectives that serve to provide a general blueprint for sustaining the legacy of the Institute by leveraging opportunities in emerging scientific areas (e.g.

View Article and Find Full Text PDF

This chapter briefly discusses the developments in electrophoresis of proteins from Tiselius' moving-boundary electrophoresis to the modern-day two-dimensional polyacrylamide gel electrophoresis. It also touches upon the staining methods used to visualize total proteins post electrophoresis.

View Article and Find Full Text PDF

Through the measure of thousands of small-molecule metabolites in diverse biological systems, metabolomics now offers the potential for new insights into the factors that contribute to complex human diseases such as cardiovascular disease. Targeted metabolomics methods have already identified new molecular markers and metabolomic signatures of cardiovascular disease risk (including branched-chain amino acids, select unsaturated lipid species, and trimethylamine--oxide), thus in effect linking diverse exposures such as those from dietary intake and the microbiota with cardiometabolic traits. As technologies for metabolomics continue to evolve, the depth and breadth of small-molecule metabolite profiling in complex systems continue to advance rapidly, along with prospects for ongoing discovery.

View Article and Find Full Text PDF

Context: A review of interventions addressing obesity disparities could reveal gaps in the literature and provide guidance on future research, particularly for populations with a high prevalence of obesity and obesity-related cardiometabolic risk.

Evidence Acquisition: A systematic review of clinical trials in obesity disparities research that were published in 2011-2016 in PubMed/MEDLINE resulted in 328 peer-reviewed articles. Articles were excluded if they had no BMI, weight, or body composition measure as primary outcome or were foreign (n=201); were epidemiologic or secondary data analyses of clinical trials (n=12); design or protocol papers (n=54); systematic reviews (n=3); or retracted or duplicates (n=9).

View Article and Find Full Text PDF

The National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health convened a Working Group on the Microbiome in Cardiovascular, Pulmonary and Hematologic Health and Diseases from June 25, 2014, to June 26, 2014. The Working Group's central goal was to define what major microbiome research areas warranted additional study in the context of heart, lung, and blood (HLB) diseases. The Working Group identified studies of the human virome a key priority.

View Article and Find Full Text PDF

The Extracellular RNA (exRNA) Communication Consortium, funded as an initiative of the NIH Common Fund, represents a consortium of investigators assembled to address the critical issues in the exRNA research arena. The overarching goal is to generate a multi-component community resource for sharing fundamental scientific discoveries, protocols, and innovative tools and technologies. The key initiatives include (a) generating a reference catalogue of exRNAs present in body fluids of normal healthy individuals that would facilitate disease diagnosis and therapies, (b) defining the fundamental principles of exRNA biogenesis, distribution, uptake, and function, as well as development of molecular tools, technologies, and imaging modalities to enable these studies,

View Article and Find Full Text PDF

The year 2014 marked the 20th anniversary of the coining of the term proteomics. The purpose of this scientific statement is to summarize advances over this period that have catalyzed our capacity to address the experimental, translational, and clinical implications of proteomics as applied to cardiovascular health and disease and to evaluate the current status of the field. Key successes that have energized the field are delineated; opportunities for proteomics to drive basic science research, facilitate clinical translation, and establish diagnostic and therapeutic healthcare algorithms are discussed; and challenges that remain to be solved before proteomic technologies can be readily translated from scientific discoveries to meaningful advances in cardiovascular care are addressed.

View Article and Find Full Text PDF

Together with polyacrylamide gel electrophoresis, the western blot has been an invaluable research technique in biological sciences. It continues to serve as an important diagnostic tool in medical laboratories. The procedure, however, involves multiple steps that are often time and resource intensive in addition to being of low throughput.

View Article and Find Full Text PDF

A quality assessment of the primary studies reported in the literature carried out using select dietary ingredients (DI) purported to affect vascular endothelial function was conducted through a systematic PubMed search from January 2000 to August 2012. A total of seventy randomised controlled trials with defined DI (folic acid (fifteen), n-3 fatty acids (twenty), cocoa (fifteen) and isoflavones (twenty)) and standardised measures of vascular endothelial function were evaluated. Jadad scores, quality scoring parameters for DI and flow-mediated dilation (FMD) methodology used were ascertained.

View Article and Find Full Text PDF

Adoption of targeted mass spectrometry (MS) approaches such as multiple reaction monitoring (MRM) to study biological and biomedical questions is well underway in the proteomics community. Successful application depends on the ability to generate reliable assays that uniquely and confidently identify target peptides in a sample. Unfortunately, there is a wide range of criteria being applied to say that an assay has been successfully developed.

View Article and Find Full Text PDF

The National Heart, Lung and Blood Institute (NHLBI) is firmly committed to advancing translational research, especially in the field of genetics. An evaluation of the NHLBI’s extramural research grants funded in FY2008 and FY2011 was conducted to establish a baseline from which to assess progress in translational research, to assess current commitments and initial progress, and to identify putative gaps, barriers, and opportunities in the Institute’s human genetics research portfolios. A search of the category of Genetics using the NIH Research, Condition, and Disease Categorization (RCDC) system was conducted to identify human genetics research project grants in the NHLBI’s genetics research portfolio.

View Article and Find Full Text PDF

Background: Among the various cardiovascular diseases, heart failure (HF) is projected to have the largest increases in incidence over the coming decades; therefore, improving HF prediction is of significant value. We evaluated whether cardiac troponin T (cTnT) measured with a high-sensitivity assay and N-terminal pro-B-type natriuretic peptide (NT-proBNP), biomarkers strongly associated with incident HF, improve HF risk prediction in the Atherosclerosis Risk in Communities (ARIC) study.

Methods: Using sex-specific models, we added cTnT and NT-proBNP to age and race ("laboratory report" model) and to the ARIC HF model (includes age, race, systolic blood pressure, antihypertensive medication use, current/former smoking, diabetes, body mass index, prevalent coronary heart disease, and heart rate) in 9868 participants without prevalent HF; area under the receiver operating characteristic curve (AUC), integrated discrimination improvement, net reclassification improvement (NRI), and model fit were described.

View Article and Find Full Text PDF

The leading cause of major morbidity and mortality in most countries around the world is atherosclerotic cardiovascular disease, most commonly caused by thrombotic occlusion of a high-risk coronary plaque resulting in myocardial infarction or cardiac death, or embolization from a high-risk carotid plaque resulting in stroke. The lesions prone to result in such clinical events are termed vulnerable or high-risk plaques, and their identification may lead to the development of pharmacological and mechanical intervention strategies to prevent such events. Autopsy studies from patients dying of acute myocardial infarction or sudden death have shown that such events typically arise from specific types of atherosclerotic plaques, most commonly the thin-cap fibroatheroma.

View Article and Find Full Text PDF

This chapter discusses, briefly, the developments in electrophoresis of proteins from Tiselius' moving boundary electrophoresis to the modern day two-dimensional polyacrylamide gel electrophoresis. It also touches upon the staining methods used to visualize total proteins postelectrophoresis.

View Article and Find Full Text PDF

Background: Clinical proteomics presents great promise in biology and medicine because of its potential for improving our understanding of diseases at the molecular level and for detecting disease-related biomarkers for diagnosis, prognosis, and prediction of therapeutic responses. To realize its full potential to improve clinical outcome for patients, proteomic studies have to be well designed, from biosample cohorts to data and statistical analyses. One key component in the biomarker development pipeline is the understanding of the regulatory science that evaluates diagnostic assay performance through rigorous analytical and clinical review criteria.

View Article and Find Full Text PDF

The tantalizing potential of nanotechnology is to fabricate and combine nanoscale approaches and building blocks to make useful tools and, ultimately, interventions for medical science, including nutritional science, at the scale of approximately 1-100 nm. In the past few years, tools and techniques that facilitate studies and interventions in the nanoscale range have become widely available and have drawn widespread attention. Recently, investigators in the food and nutrition sciences have been applying the tools of nanotechnology in their research.

View Article and Find Full Text PDF

The emerging scientific field of proteomics encompasses the identification, characterization, and quantification of the protein content or proteome of whole cells, tissues, or body fluids. The potential for proteomic technologies to identify and quantify novel proteins in the plasma that can function as biomarkers of the presence or severity of clinical disease states holds great promise for clinical use. However, there are many challenges in translating plasma proteomics from bench to bedside, and relatively few plasma biomarkers have successfully transitioned from proteomic discovery to routine clinical use.

View Article and Find Full Text PDF

The Experimental Biology 2003 symposium entitled "New Technologies for Nutrition Research" was organized to highlight new and emerging technologies, including nanotechnology and proteomics, and to suggest ways for their integration into nutrition research. Speakers focused on topics that included accelerator mass spectrometry for ultra-low level radiolabel tracing, nanodevices for real-time optical intracellular sensing, mass spectrometric techniques for examining protein expression, as well as potential applications for nanotechnology in the food sciences. These technologies may be particularly useful in obtaining accurate spatial information and low-level detection of essential and nonessential bioactive food components (nutrients) and their metabolites, and in enhancing the understanding of the impact of nutrient/metabolite and biomolecular interactions.

View Article and Find Full Text PDF