Over the last decades remarkable advances have been made in the understanding of the photobiology of circadian rhythms. The identification of a third photoreceptive system in the mammalian eye, in addition to the rods and cones that mediate vision, has transformed our appreciation of the role of light in regulating physiology and behavior. These photosensitive retinal ganglion cells (pRGCs) express the blue-light sensitive photopigment melanopsin and project to the suprachiasmatic nuclei (SCN)-the master circadian pacemaker-as well as many other brain regions.
View Article and Find Full Text PDFMistimed exposure to light has been demonstrated to negatively affect multiple aspects of physiology and behavior. Here we analyzed the effects of chronic exposure to abnormal lighting conditions in mice. We exposed mice for 1 year to either: a standard light/dark cycle, a "light-pollution" condition in which low levels of light were present in the dark phase of the circadian cycle (dim light at night, DLAN), or altered light cycles in which the length of the weekday and weekend light phase differed by 6 h ("social jetlag").
View Article and Find Full Text PDFLight plays a critical role in regulating physiology and behavior, including both visual and non-visual responses. In mammals, loss of both eyes abolishes all of these responses, demonstrating that the photoreceptors involved are exclusively ocular. By contrast, many non-mammalian species possess extra-ocular photoreceptors located in the pineal complex and deep brain.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2021
Light provides the primary signal for entraining circadian rhythms to the day/night cycle. In addition to rods and cones, the retina contains a small population of photosensitive retinal ganglion cells (pRGCs) expressing the photopigment melanopsin (OPN4). Concerns have been raised that exposure to dim artificial lighting in the evening (DLE) may perturb circadian rhythms and sleep patterns, and OPN4 is presumed to mediate these effects.
View Article and Find Full Text PDFMutations in transcription factors often exhibit pleiotropic effects related to their complex expression patterns and multiple regulatory targets. One such mutation in the zinc finger homeobox 3 (ZFHX3) transcription factor, short circuit (Sci, Zfhx3 ), is associated with significant circadian deficits in mice. However, given evidence of its retinal expression, we set out to establish the effects of the mutation on retinal function using molecular, cellular, behavioral and electrophysiological measures.
View Article and Find Full Text PDFStudy Objectives: Torpor is a regulated and reversible state of metabolic suppression used by many mammalian species to conserve energy. Whereas the relationship between torpor and sleep has been well-studied in seasonal hibernators, less is known about the effects of fasting-induced torpor on states of vigilance and brain activity in laboratory mice.
Methods: Continuous monitoring of electroencephalogram (EEG), electromyogram (EMG), and surface body temperature was undertaken in adult, male C57BL/6 mice over consecutive days of scheduled restricted feeding.
Body temperature is an important physiological parameter in many studies of laboratory mice. Continuous assessment of body temperature has traditionally required surgical implantation of a telemeter, but this invasive procedure adversely impacts animal welfare. Near-infrared thermography provides a non-invasive alternative by continuously measuring the highest temperature on the outside of the body (T), but the reliability of these recordings as a proxy for continuous core body temperature (T) measurements has not been assessed.
View Article and Find Full Text PDFCircadian rhythms are approximately 24 h cycles in physiology and behaviour that enable organisms to anticipate predictable rhythmic changes in their environment. These rhythms are a hallmark of normal healthy physiology, and disruption of circadian rhythms has implications for cognitive, metabolic, cardiovascular and immune function. Circadian disruption is of increasing concern, and may occur as a result of the pressures of our modern 24/7 society-including artificial light exposure, shift-work and jet-lag.
View Article and Find Full Text PDFMelanopsin (OPN4) is an opsin photopigment expressed within intrinsically photosensitive retinal ganglion cells (ipRGCs) that mediate non-image forming (NIF) responses to light. Two single-nucleotide polymorphisms (SNPs) in human melanopsin (hOPN4), Pro10Leu and Thr394Ile, have recently been associated with abnormal NIF responses to light, including seasonal affective disorder. It has been suggested these behavioural changes are due to altered melanopsin signalling.
View Article and Find Full Text PDFCryptochromes 1 and 2 (CRY1/2) are key components of the negative limb of the mammalian circadian clock. Like many peripheral tissues, Cry1 and -2 are expressed in the retina, where they are thought to play a role in regulating rhythmic physiology. However, studies differ in consensus as to their localization and function, and CRY1 immunostaining has not been convincingly demonstrated in the retina.
View Article and Find Full Text PDFLight exerts widespread effects on physiology and behaviour. As well as the widely-appreciated role of light in vision, light also plays a critical role in many non-visual responses, including regulating circadian rhythms, sleep, pupil constriction, heart rate, hormone release and learning and memory. In mammals, responses to light are all mediated via retinal photoreceptors, including the classical rods and cones involved in vision as well as the recently identified melanopsin-expressing photoreceptive retinal ganglion cells (pRGCs).
View Article and Find Full Text PDFCircadian deficits in Huntington's disease (HD) are recapitulated in both fragment (R6/2) and full-length (Q175) mouse models of HD. Circadian rhythms are regulated by the suprachiasmatic nuclei (SCN) in the hypothalamus, which are primarily entrained by light detected by the retina. The SCN receives input from intrinsically photosensitive retinal ganglion cells (ipRGCs) that express the photopigment melanopsin, but also receive input from rods and cones.
View Article and Find Full Text PDFLight plays a critical role in the regulation of numerous aspects of physiology and behaviour, including the entrainment of circadian rhythms and the regulation of sleep. These responses involve melanopsin (OPN4)-expressing photosensitive retinal ganglion cells (pRGCs) in addition to rods and cones. Nocturnal light exposure in rodents has been shown to result in rapid sleep induction, in which melanopsin plays a key role.
View Article and Find Full Text PDFMelanopsin (OPN4) is a retinal photopigment that mediates a wide range of non-image-forming (NIF) responses to light including circadian entrainment, sleep induction, the pupillary light response (PLR), and negative masking of locomotor behavior (the acute suppression of activity in response to light). How these diverse NIF responses can all be mediated by a single photopigment has remained a mystery. We reasoned that the alternative splicing of melanopsin could provide the basis for functionally distinct photopigments arising from a single gene.
View Article and Find Full Text PDFSleep is a fundamental biological rhythm involving the interaction of numerous brain structures and diverse neurotransmitter systems. The primary measures used to define sleep are the electroencephalogram (EEG) and electromyogram (EMG). However, EEG-based methods are often unsuitable for use in high-throughput screens as they are time-intensive and involve invasive surgery.
View Article and Find Full Text PDFTRPM1 is a spontaneously active non-selective cation channel that has recently been shown to play an important role in the depolarizing light responses of ON bipolar cells. Consistent with this role, mutations in the TRPM1 gene have been identified as a principal cause of congenital stationary night blindness. However, previous microarray studies have shown that Trpm1 and Trpm3 are acutely regulated by light in the eyes of mice lacking rods and cones (rd/rd cl), a finding consistent with a role in non-image-forming photoreception.
View Article and Find Full Text PDFGroup III metabotropic glutamate receptors (especially mGlu4, mGlu7, mGlu8) are thought to be involved in modulating visual processing in the adult superior colliculus, a major termination site of retinal input in the rodent brain. We have investigated this role by making field EPSP recordings in response to optic tract stimulation in superior colliculus slices taken from rats aged from P14 to P180. Application of the Group III agonist L-AP4 at a concentration (10 microM) effective to activate mGlu4 and mGlu8 receptors, but not mGlu7 receptors, resulted in reductions of the field EPSP in all ages, although the effect was greatest in slices taken from P14 rats.
View Article and Find Full Text PDFIonotropic and metabotropic glutamate receptors mediate and modulate retinocollicular transmission. The Royal College of Surgeons (RCS) dystrophic strain of rats suffers from a progressive retinal degeneration with age and hence loss of visual function. We investigated whether this loss of function is accompanied by functional changes in a central target of retinal axons, the superficial superior colliculus (SSC).
View Article and Find Full Text PDFWe have previously shown that activation of Group III metabotropic glutamate (mGlu) receptors modulates synaptic transmission in the superior colliculus. We thus investigated the effect of the selective mGlu8 receptor agonist (S)-3,4-dicarboxyphenylglycine (DCPG) on excitatory synaptic transmission in the superficial superior colliculus (SC) using an in vitro slice preparation of the rat SC. Field EPSPs evoked by optic tract stimulation under conditions of GABA receptor blockade were reduced by DCPG by up to 67.
View Article and Find Full Text PDFGroup I metabotropic glutamate receptors (mGluRs) are expressed in cells in the superficial layers of the rat superior colliculus (SSC) and SSC afferents. The purpose of this study was to investigate the physiological effect of Group I mGluR activation on visual responses of SSC neurones using both in vivo and in vitro techniques. In the in vivo preparation, agonists and antagonists were applied by iontophoresis and single neurone activity was recorded extracellularly in anaesthetised rats.
View Article and Find Full Text PDF