Publications by authors named "Porte-Durrieu M"

Purpose: To validate the deployment, in vivo performance, biostability, and healing capacity of the Anaconda self-expanding endoprosthesis in a canine aortic aneurysm model.

Methods: Aneurysms were surgically created in 12 dogs by sewing a woven polyester patch onto the anterior side of the thoracic or abdominal aorta. Anaconda prostheses were implanted transfemorally for prescheduled periods (1 or 3 months).

View Article and Find Full Text PDF

In the present paper, specific interest has been devoted to the design of new hybrid materials associating Ti-6Al-4V alloy and osteoprogenitor cells through the grafting of two RGD containing peptides displaying a different conformation (linear RGD and cyclo-DfKRG) onto titanium surface. Biomimetic modification was performed by means of a three-step reaction procedure: silanization with APTES, cross-linking with SMP and finally immobilization of peptides thanks to thiol bonding. The whole process was performed in anhydrous conditions to ensure homogeneous biomolecules layout as well as to guarantee a sufficient amount of biomolecules grafted onto surfaces.

View Article and Find Full Text PDF

Parallel to the biofunctionalisation of existing materials, innovation in biomaterials engineering has led to the specific design of titanium alloys for medical applications. Studies of the biological behaviour of metallic elements have shown that the composition and structure of the material should be carefully tailored to minimise adverse body reactions and to enhance implant longevity, respectively. Consequently, interest has focused on a new family of titanium alloys: Ti-6Mo-3Fe-5Ta, Ti-4Mo-2Fe-5Ta and Ti-6Mo-3Fe-5Zr-5Hf alloys.

View Article and Find Full Text PDF

The development of ideal antithrombogenic polymers, a major problem in biomaterials sciences, is a primary objective in the fields of cardiovascular prostheses, artificial hearts, and other devices. To decrease their thrombogenicity, which remains the major obstacle, we have developed polymeric materials endowed with a specific affinity for antithrombin III (ATIII) and thus able, like heparin, to catalyze the inhibition of thrombin by ATIII. Sulfonate and sulfonamide groups are introduced onto phenyl rings belonging to styrene residues, which are radiation grafted (using swift heavy ion and gamma radiation) onto poly(vinylidene difluoride) (PVDF) and also onto poly(vinylidene fluoride/hexafluoropropylene) [P(VDF-HFP)].

View Article and Find Full Text PDF

The attachment of human umbilical vein endothelial cells (HUVECs) on substrates that had been covalently grafted with the cell adhesion peptides Arg-Gly-Asp (RGD) was investigated. This approach was used to provide substrates that are adhesive to cells even in the absence of serum proteins and to cells that have had no prior treatment of the surface with proteins that promote cell adhesion. We wanted to improve control of cellular interactions with cell-adhesive materials by providing fixedly bound adhesion ligands.

View Article and Find Full Text PDF

In order to improve long-term patency of vascular grafts, the promising concept of endothelial cell seeding is actually under investigation. Our laboratory tested a polyester coated with albumin and chitosan which permits a rapid colonization by human umbilical vein endothelial cells (HUVEC) and it seems relevant to test in vitro the expression of adhesive molecules expressed by cells with regard to the inflammatory process. We studied intercellular adhesion molecule-1 (ICAM-1) expression and focused our work on the determination of ICAM-1 sites expressed per adherent cell lining the biomaterial, thus in situ, in comparison to control HUVEC on plastic wells: the results obtained by binding experiments were correlated to flow cytometry analyses and showed that the polyester does not induce a proinflammatory state and that HUVEC covering the structure are able to respond to a stimulus.

View Article and Find Full Text PDF