Publications by authors named "Porowski S"

Extensive ab initio density functional theory molecular dynamics calculations were used to evaluate stability conditions for relevant phases of InN. In particular, the p-T conditions of the thermal decomposition of InN and pressure-induced wurtzite-rocksalt solid-solid phase transition were established. The comparison of the simulation results with the available experimental data allowed for a critical evaluation of the capabilities and limitations of the proposed simulation method.

View Article and Find Full Text PDF

The dissolution of molecular nitrogen in Ga and Fe was investigated by calculations and some complementary experiments. It was found that the N bonding inside these solvents is fundamentally different. For Ga, it is between and and states whereas for Fe this is by to , and states.

View Article and Find Full Text PDF

The aim of the study was to investigate the microbiological decontamination of coriander and caraway when HPP technology was applied in elevated temperature in helium atmosphere. The HPP and heat treatment was conducted for 30 minutes at 800 and 1 000 MPa and temperature range was 60 - 121 degrees C. Contamination with aerobic mesophilic bacteria was decreased by about 2 logarithmic cycles.

View Article and Find Full Text PDF

A model cosolvent, ethanol, has profound and diversified effects on the amyloidogenic self-assembly of insulin, yielding spectroscopically and morphologically distinguishable forms of beta-aggregates. The alcohol reduces hydrodynamic radii of insulin molecules, decreases enthalpic costs associated with aggregation-prone intermediate states, and accelerates the aggregation itself. Increasing the concentration of the cosolvent promotes curved, amorphous, and finally donut-shaped forms.

View Article and Find Full Text PDF

In the presence of ethanol, insulin forms amyloid morphologically distinct from the ambient specimen. Due to stability of fibrils and the autocatalytic character of the process, the two amyloid templates, when seeded, replicate the initial morphologies (and inter-beta-strand hydrogen bonding patterns) regardless of the environmental biases, such as the cosolvent presence. Such "templated memory" effect is advantageous in synthesizing structurally uniform protein nanofibrils under conditions favoring alternative "wild" forms.

View Article and Find Full Text PDF

Magnetoluminescence of the exciton bound to a neutral acceptor was measured to investigate the electronic structure of a shallow acceptor center in GaN. The application of magnetic fields along different directions with respect to the crystal c axis allowed us to determine the symmetry of the ground (Gamma(9)) and the first excited state (Gamma(7)) of the acceptor. The observed Zeeman splitting pattern has axial symmetry but can be explained well only by assuming a significant reduction of the spin-orbit interaction for this acceptor state.

View Article and Find Full Text PDF

This review summarizes data on the structure and properties of water under normal conditions, at high salt concentration and under high pressure. We correlate the observed conformational transitions in nucleic acids with changes in water structure and activity, and suggest a mechanism of conformational transitions of nucleic acid involving these changes. We conclude that the Z-DNA form is induced only at low water activity caused by high salt concentrations and/or high pressure.

View Article and Find Full Text PDF

This review describes and summarizes data on the structure and properties of water under normal conditions, at high salt concentration and under high pressure. We correlate the observed conformational changes in nucleic acids with changes in water structure and activity, and suggest a mechanism of conformational transitions of nucleic acids which accounts for changes in the water structure. From the biophysical, biochemical and crystallographic data we conclude that the Z-DNA form can be induced only at low water activity produced by high salt concentrations or high pressure, and accompanied by the stabilizing conjugative effect of the cytidine O4' electrons of the CG base pairs.

View Article and Find Full Text PDF

A high-pressure resonant cavity for sensitive EPR measurements is described. The cavity operating in the TE(115) cylindrical mode enables EPR experiments to be carried out in the 77-300 K temperature range at high hydrostatic pressure up to 8 kilobar.

View Article and Find Full Text PDF