is an opportunistic pathogen in humans and a frequent cause of severe nosocomial infections and fatal infections in immunocompromised individuals. Its ability to form biofilms has been the main driving force behind its resistance to almost all conventional antibiotics, thereby limiting treatment efficacy. In an effort to discover novel therapeutic agents to fight -associated biofilm infections, the truncated analogs of scorpion venom-derived peptide IsCT were synthesized and their anti-biofilm properties were examined.
View Article and Find Full Text PDFThe respiratory pathogen nontypeable (NTHi) is the most common cause of exacerbation of chronic obstructive pulmonary disease (COPD), of which an excessive inflammatory response is a hallmark. With the limited success of current medicines there is an urgent need for the development of novel therapeutics that are both safe and effective. In this study, we explored the regulatory potential of pomegranate-derived peptides Pug-1, Pug-2, Pug-3, and Pug-4 on NTHi-induced inflammation.
View Article and Find Full Text PDFThe continuous increase in the incidence of infectious diseases and the rapid unchecked rise in multidrug-resistance to conventional antibiotics have led to the search for alternative strategies for treatment and clinical management of microbial infections. Since quorum sensing (QS) regulates numerous virulence determinants and pathogenicity in bacteria, inhibition of QS promises to be an attractive target for development of novel therapeutics. In this study, a series of cinnamic acid analogs and benzalacetone analogs were designed and synthesized, and their QS-inhibitory activities explored.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) are attractive alternatives to antibiotics. Due to their immune modulatory properties, AMPs are at present emerging as promising agents for controlling inflammatory-mediated diseases. In this study, anti-inflammatory potential of an antimicrobial peptide, KLK (KLKLLLLLKLK) and its analogs was evaluated in lipopolysaccharide (LPS)-induced RAW 264.
View Article and Find Full Text PDF