Polyhydroxyalkanoates (PHAs) have attracted attention as an environmentally degradable bioplastic which potentially replaces synthetic polymers used in a wide range of industries. One of most promising microorganisms for the production of PHAs is Pseudomonas putida. In this study, we purpose to develop sustainable processes to convert abundant palm oil available in local market to high value PHAs and optimize PHAs production by Pseudomonas putida TISTR 1522 from saponified palm oil.
View Article and Find Full Text PDFLong-chain alkyl glucosides, such as octyl and decyl β-d-glucopyranosides (OG and DG, respectively), are regarded as a new generation of biodegradable, non-ionic surfactants. Previously, the mutants of Dalbergia cochinchinensis Pierre dalcochinase showed potential in the synthesis of oligosaccharides and alkyl glucosides. In this study, the N189F dalcochinase mutant gave the highest yields of OG and DG synthesis under reverse hydrolysis conditions.
View Article and Find Full Text PDFObjective: To synthesize octyl β-D-glucopyranoside (OG) and decyl β-D-glucopyranoside (DG) in three non-aqueous reaction systems, namely organic solvents, ionic liquids and co-solvent mixtures, via reverse hydrolysis reactions catalyzed by the N189F dalcochinase mutant.
Results: The highest yield of OG (67 mol%) was obtained in the reaction containing 0.5 M glucose, 3 unit ml enzyme in 20% (v/v) octanol and 70% (v/v) [BMIm][PF] at 30 °C.
Dalcochinase from Dalbergia cochinchinensis Pierre and linamarase from Manihot esculenta Crantz are β-glucosidases which share 47% sequence identity, but show distinct substrate specificities in hydrolysis and transglucosylation. Previously, three amino acid residues of dalcochinase, namely I185, N189 and V255, were identified as being important for determining substrate specificity. In this study, kinetic analysis of the ensuing double and triple mutants of dalcochinase showed that only those containing the 185A mutation could appreciably hydrolyze linamarin as well as transfer glucose to 2-methyl-2-propanol.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.