Publications by authors named "Pornnapa Kasemsiri"

Flexible conductive hydrogel strain sensors are gaining popularity due to their exceptional stretchability, sensitivity, and potential for wearable devices. However, their widespread use is hindered by significant issues, such as poor electrical conductivity and weak response time. To address these challenges, new hydrogels based on guar gum, borax, and glycerol have been fabricated via a green synthesis technique.

View Article and Find Full Text PDF

Herein, the novel eco-friendly biopolymer electrolytes consisting of banana powder and konjac glucomannan host matrix doped with zinc acetate salt were successfully fabricated through simple casting technique. The biopolymer electrolyte exhibited satisfactory thermal stability and mechanical properties; tensile strength (13.82 MPa); elongation at break (60.

View Article and Find Full Text PDF

Effective drug delivery for is the foremost requirement for the complete recovery of the disease. Nanomedicine and nanoengineering has provided so many spaces and ideas for the drug delivery design, whether controlled, targeted, or sustained. Different types of nanocarriers or nanoparticles are aggressively designed for the drug delivery applications.

View Article and Find Full Text PDF

In this study, a smart strain sensor based on gluten/guar gum (GG) copolymer containing a combination of additives was developed. The mix proportions of strain sensors were designed using Taguchi method coupled with Grey relational analysis. L16 orthogonal array with three factors, viz.

View Article and Find Full Text PDF

So far, a large variety of polymer molecule architectures have been explored in the electrolyte field. Polymer electrolytes have gathered research efforts as an interesting alternative to conventional liquid electrolytes due to their advantages of low probability of leakage and low volatility of liquid solvent, lightweight, flexibility, inertness, high durability, and thermal stability. In this work, a polymer electrolyte developed from a polyurethane/polyacrylonitrile (PU/PAN) electrospinning fiber membrane was added with different zinc (Zn) salts, namely, Zn(CHCO), ZnSO, and Zn(OTf).

View Article and Find Full Text PDF

Environmentally friendly biopolymer-based wood adhesives are an inevitable trend of wood product development to replace the use of harmful formaldehyde-based adhesives. In this research, a new eco-friendly modified cassava starch waste-based adhesive via carboxymethylation (CMS), and blending with polyvinyl alcohol (PVA), tannic acid (TA) and green synthesized silver nanoparticles (AgNPs) was prepared. The effects of TA content on green synthesis of AgNPs (Ag-TA) and bio-adhesive nanocomposite properties were investigated.

View Article and Find Full Text PDF

Bacterial wound infections remain a significant health issue of great concern. Hence, there is a need to develop a novel material with antibacterial properties and smart functions. In this study, the effects of silver nanoparticles content (AgNPs) on properties of photothermal and pH-responsive nanocomposite hydrogels were investigated.

View Article and Find Full Text PDF

PM2.5 (particulate matter with a size of <2.5 μm) pollution has become a critical issue owing to its adverse health effects, including bronchitis, pneumonopathy, and cardiovascular diseases.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) has attracted considerable attention for use as a disinfectant ingredient for various applications over the decades. The use of HO within the safety regulations can avoid its toxicity to human health and the environment. In this study, a paper-based sensor containing green-synthesized silver nanoparticles (P-AgNPs) was developed for use in a smartphone in the determination of the HO concentration.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs)/carboxylated cellulose nanocrystals (Ag-cCNC) from Eucalyptus pulp were prepared using a three-step process. The cCNC were synthesized by oxidation of CNC from Eucalyptus pulp with ammonium persulfate, followed by a hydrothermal reaction to form Ag-cCNC. The Ag-cCNC was then characterized with respect to Ag release, flow behavior, and anticancer activity for potential applications in biomedicine and drug delivery.

View Article and Find Full Text PDF

The recent development of separators with high flexibility, high electrolyte uptake, and ionic conductivity for batteries have gained considerable attention. However, studies on composite separators with the aforementioned properties for aqueous electrolytes in Zn-ion batteries are limited. In this research, a polyacrylonitrile (PAN)/bio-based polyurethane (PU)/TiCT MXene composite membrane was fabricated using an electrospinning technique.

View Article and Find Full Text PDF

The presence of magnesium (Mg) and calcium (Ca) in biochar-based fertilizers is linked to the slow release of phosphorus (P), but these alkali metals have not been systematically compared under identical conditions. In this study, sugarcane filter cake was treated with HPO and MgO or CaO followed by pyrolysis at 600 °C to produce a Mg/P-rich biochar (MgPA-BC) and a Ca/P-rich biochar (CaPA-BC), respectively. The P-loaded biochars were studied by extraction and kinetic release in water over 240 hours to assess the potential P availability.

View Article and Find Full Text PDF

The use of active packaging has attracted considerable attention over recent years to prevent and decrease the risk of bacterial and viral infection. Thus, this work aims to develop active packaging using a paper coated with green-synthesized silver nanoparticles (AgNPs). Effects of different silver nitrate (AgNO) concentrations, viz.

View Article and Find Full Text PDF

Unlabelled: To avoid bacterial and viral infections on food products, the use of antibacterial and antiviral packaging offers great benefit to the food industry. In this study, the coating of paper packaging with silver-decorated magnetic particles (Ag@FeO) was developed. The Ag@FeO was prepared by a facile and environmentally friendly method using extracted spent coffee grounds (ex-SCG).

View Article and Find Full Text PDF

Conventional drug delivery systems often cause side effects and gastric degradation. Novel drug delivery systems must be developed to decrease side effects and increase the efficacy of drug delivery. This research aimed to fabricate hydrogel beads for use as a drug delivery system based on basil seed mucilage (BSM), sodium alginate (SA), and magnetic particles (MPs).

View Article and Find Full Text PDF

Zinc ionic conducting-based gel polymer electrolytes (GPEs) were fabricated from carboxymethyl cellulose (CMC) and three different zinc salts in a mass ratio ranging within 0-30 wt%. The effects of zinc salt and loading level on the structure, thermal, mechanical, mechanical stability, and morphological properties, as well as electrochemical properties of the GPEs films, were symmetrically investigated. The mechanical properties and mechanical stability of CMC were improved with the addition of zinc acetate, zinc sulphate, and zinc triflate, approaching the minimum requirement of a solid state membrane for battery.

View Article and Find Full Text PDF

Zinc oxide nanoparticles (nano-ZnO) are attractive as fertilizer materials but high concentrations may negatively affect the environment. To reduce their dispersion in the environment we entrapped nano-ZnO in biodegradable polymer beads consisting of alginate and polyvinyl alcohol (PVA). The alginate/PVA/ZnO beads were prepared via ionotropic gelation using two different crosslinking ions (Ca and Zn), and the effect of alginate crosslinking ion and PVA content on bead structure, water absorption, water retention and zinc release was investigated.

View Article and Find Full Text PDF

Treatment of infections using wound dressing integrated with multiple functions such as antibacterial activity, non-toxicity, and good mechanical properties has attracted much attention. In this study, carboxymethyl starch/polyvinyl alcohol/citric acid (CMS/PVA/CA) hydrogels containing silver nanoparticles (AgNPs) were prepared. The CMS, PVA and CA were used as polymer matrix and bio-based reducing agents for green synthesis of AgNPs.

View Article and Find Full Text PDF

Ultrasound-assisted extraction (UAE) was used to extract anthocyanins, antioxidants and phenolic compounds from butterfly pea petals, as an alternative to traditional methods. Taguchi method with three factors: extraction time (30, 45, 60 min), temperature (40, 60, 80 °C) and liquid-solid ratio (5, 7.5, 10 mL distilled water/mg butterfly pea) was used to obtain the high extraction yield.

View Article and Find Full Text PDF

A novel polymer host from carboxymethyl cellulose (CMC)/poly(N-isopropylacrylamide) (PNiPAM) was developed for a high safety solid polymer electrolyte (SPE) in a zinc ion battery. Effects of the PNiPAM loading level in the range of 0-40% by weight ( wt%) on the chemical, mechanical, thermal, and morphological properties of the CMC/PNiPAMx films (where x is the wt% of PNiPAM) were symmetrically investigated. The obtained CMC/PNiPAMx films showed a high compatibility between the polymers.

View Article and Find Full Text PDF

Conventional shape memory polymers (SMPs) can memorize their permanent shapes. However, these SMPs cannot reconfigure their original shape to obtain a desirable geometry owing to permanent chemically or physically crosslinked networks. To overcome this limitation, novel SMPs that can be reconfigured via bond exchange reactions (BERs) have been developed.

View Article and Find Full Text PDF