Publications by authors named "Porgho S"

Introduction: In 2017, the Ministry of Health and Public Hygiene (MoH) of Burkina Faso designed and piloted a specimen transport system using the national courier services (La Poste BF) in 4 districts. Based on satisfactory performance indicators, the MoH set a vision aimed at scaling up this system to strengthen disease detection and surveillance of epidemic prone diseases across the country. This work describes the implementation process, performances, and lessons learned.

View Article and Find Full Text PDF

Despite improved surveillance capacities and WHO recommendations for subdistrict analysis, routine epidemic surveillance of acute bacterial meningitis in the African meningitis belt remains largely limited to the district level. We evaluated the appropriateness and performance of analyses at higher spatial resolution. We used suspected meningitis surveillance data at health centre (HC) resolution from Burkina Faso from 14 health districts spanning years 2004-2014 and analysed them using spatio-temporal statistics and generative models.

View Article and Find Full Text PDF

Efficient specimen transport systems are critical for early disease detection and reporting by laboratory networks. In Burkina Faso, centralized reference laboratories receive specimens from multiple surveillance sites for testing, but transport methods vary, resulting in potential delays and risk to specimen quality. The ministry of health and partners, under the Global Health Security Agenda implementation, piloted a specimen transport system for severe acute respiratory illness (SARI) surveillance in 4 Burkina Faso districts.

View Article and Find Full Text PDF

The pathophysiological mechanisms underlying the seasonal dynamic and epidemic occurrence of bacterial meningitis in the African meningitis belt remain unknown. Regular seasonality (seasonal hyperendemicity) is observed for both meningococcal and pneumococcal meningitis and understanding this is critical for better prevention and modelling. The two principal hypotheses for hyperendemicity during the dry season imply (1) an increased risk of invasive disease given asymptomatic carriage of meningococci and pneumococci; or (2) an increased transmission of these bacteria from carriers and ill individuals.

View Article and Find Full Text PDF

Background: Bacterial meningitis causes a high burden of disease in the African meningitis belt, with regular seasonal hyperendemicity and sporadic short, but intense, localized epidemics during the late dry season occurring at a small spatial scale [i.e., below the district level, in individual health centers (HCs)].

View Article and Find Full Text PDF

Meningococcal meningitis epidemics in the African meningitis belt consist of localised meningitis epidemics (LME) that reach attack proportions of 1% within a few weeks. A meningococcal serogroup A conjugate vaccine was introduced in meningitis belt countries from 2010 on, but LME due to other serogroups continue to occur. The mechanisms underlying LME are poorly understood, but an association with respiratory pathogens has been hypothesised.

View Article and Find Full Text PDF