Publications by authors named "Pore J"

Article Synopsis
  • - The experiment at Lawrence Berkeley National Laboratory aimed to produce a superheavy element with an atomic number of 114 or greater by bombarding an actinide target with a ^{50}Ti beam.
  • - Using the Berkeley Gas-filled Separator, researchers successfully isolated and implanted produced Livermorium (Lv) ions into a high-tech detector system, observing two decay chains linked to ^{290}Lv.
  • - The measured production cross-section of the process was 0.44 picobarns at a specific energy, marking the first published evidence of superheavy element production near the "island of stability" with this method, paving the way for future discoveries beyond element Z=118.
View Article and Find Full Text PDF

Experiments were performed at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron facility to investigate the electron-transfer reduction reaction of dipositive Lr ( = 103) with O gas. Ions of Lr were produced in the fusion-evaporation reaction Bi(Ca,2n) Lr and were studied with a novel gas-phase ion chemistry technique. The produced Lr ions were trapped and O gas was introduced, such that the charge-exchange reaction to reduce Lr to Lr was observed and the reaction rate constant was determined to be = 1.

View Article and Find Full Text PDF

A nuclear spectroscopy experiment was conducted to study α-decay chains stemming from isotopes of flerovium (element Z=114). An upgraded TASISpec decay station was placed behind the gas-filled separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. The fusion-evaporation reactions ^{48}Ca+^{242}Pu and ^{48}Ca+^{244}Pu provided a total of 32 flerovium-candidate decay chains, of which two and eleven were firmly assigned to ^{286}Fl and ^{288}Fl, respectively.

View Article and Find Full Text PDF

In an experiment performed at Lawrence Berkeley National Laboratory's 88-inch cyclotron, the isotope ^{244}Md was produced in the ^{209}Bi(^{40}Ar,5n) reaction. Decay properties of ^{244}Md were measured at the focal plane of the Berkeley Gas-filled Separator, and the mass number assignment of A=244 was confirmed with the apparatus for the identification of nuclide A. The isotope ^{244}Md is reported to have one, possibly two, α-decaying states with α energies of 8.

View Article and Find Full Text PDF

An experiment was performed at Lawrence Berkeley National Laboratory's 88-in. Cyclotron to determine the mass number of a superheavy element. The measurement resulted in the observation of two α-decay chains, produced via the ^{243}Am(^{48}Ca,xn)^{291-x}Mc reaction, that were separated by mass-to-charge ratio (A/q) and identified by the combined BGS+FIONA apparatus.

View Article and Find Full Text PDF

Based on results from a measurement of weak decay branches observed following the β- decay of 94Y and on lifetime data from a study of 94Zr by inelastic neutron scattering, collective structure is deduced in the closed-subshell nucleus 94Zr. These results establish shape coexistence in 94Zr. The role of subshells for nuclear collectivity is suggested to be important.

View Article and Find Full Text PDF

Methylisothiocyanate (CH(3)NCS) was photolyzed at 193 and 248 nm, and the resulting time-resolved infrared emission was observed. Similar experiments were performed on methylthiocyanate (CH(3)SCN) photolyzed at 193 nm. Previous work suggested that these isomers undergo excited-state isomerization prior to dissociation, but other experiments have contradicted this claim.

View Article and Find Full Text PDF

In vitro studies have implicated the Lyn tyrosine kinase in erythropoietin signaling. In this study, we show that J2E erythroid cells lacking Lyn have impaired signaling and reduced levels of transcription factors STAT5a, EKLF and GATA-1. Since mice lacking STAT5, EKLF or GATA-1 have red cell abnormalities, this study also examined the erythroid compartment of Lyn(-/-) mice.

View Article and Find Full Text PDF