The study of root growth and plasticity in situ is rendered difficult by the opacity and mechanical barrier of soil substrates. Therefore, for the analysis of developmental processes and abiotic stress and development relationships, it is essential to set up cultivation systems that overcome these hindrances in a non-invasive and non-destructive manner. For this purpose, we have developed a useful and powerful rhizobox culture system, where the roots are separated from the soil substrate by a porous membrane with a mesh of such width that allows the exchange of water and solutes without allowing the roots to penetrate the soil.
View Article and Find Full Text PDFInvertases are key enzymes for carbon metabolism, cleaving sucrose into energy-rich and signaling metabolites, glucose and fructose. Invertases play pivotal roles in development and stress response, determining yield and quality of seed production. In this context, the repertoire of invertase gene families is critically scarce in legumes.
View Article and Find Full Text PDFExpanding the chemical space for designing novel anionic redox materials from oxides to sulfides has enabled to better apprehend fundamental aspects dealing with cationic-anionic relative band positioning. Pursuing with chalcogenides, but deviating from cationic substitution, we here present another twist to our band positioning strategy that relies on mixed ligands with the synthesis of the LiTiSSe solid solution series. Through the series the electrochemical activity displays a bell shape variation that peaks at 260 mAh/g for the composition x = 0.
View Article and Find Full Text PDFInsertion compounds provide the fundamental basis of today's commercialized Li-ion batteries. Throughout history, intense research has focused on the design of stellar electrodes mainly relying on layered oxides or sulfides, and leaving aside the corresponding halides because of solubility issues. This is no longer true.
View Article and Find Full Text PDFThis paper describes the simple, highly reproducible, and robust synthesis of a new solid organic/inorganic electrolyte based on the ionic liquid (IL) 1-butyl-3-(carboxyundecyl)imidazolium bis(trifluoromethylsulfonyl)imide tethered to zirconia nanoparticles (15-25 nm) by coordination and named ZrO@IL. The IL monolayer formation, ensured by two-dimensional solid-state NMR, at the nanoparticles' surface considerably reduces both the IL's consumption and the IL amount at the ZrO surface compared to the IL-based hybrid electrolytes reported in the literature. After LiTFSI, used as a lithium source, content optimization (26 wt %), the hybrid exhibits unprecedented stable conductivity passing from 0.
View Article and Find Full Text PDFSodium ion batteries, because of their sustainability attributes, could be an attractive alternative to Li-ion technology for specific applications. However, it remains challenging to design high energy density and moisture stable Na-based positive electrodes. Here, we report an O3-type NaLiMnO phase showing anionic redox activity, obtained through a ceramic process by carefully adjusting synthesis conditions and stoichiometry.
View Article and Find Full Text PDFis a necrotrophic fungus causing black spot disease and is an economically important seed-borne pathogen of cultivated brassicas. Seed transmission is a crucial component of its parasitic cycle as it promotes long-term survival and dispersal. Recent studies, conducted with the pathosystem, showed that the level of susceptibility of the fungus to water stress strongly influenced its seed transmission ability.
View Article and Find Full Text PDFThe regulation of source-to-sink sucrose transport is associated with AtSUC and AtSWEET sucrose transporters' gene expression changes in plants grown hydroponically under different physiological conditions. Source-to-sink transport of sucrose is one of the major determinants of plant growth. Whole-plant carbohydrates' partitioning requires the specific activity of membrane sugar transporters.
View Article and Find Full Text PDFUntil now, specific inhibitors of sucrose carriers were not available. This led us to study the properties of the recently synthesized D-glucose-fenpiclonil conjugate (D-GFC). This large amphiphilic glucoside exhibited an extremely low phloem systemicity in contrast to L-amino acid-fenpiclonil conjugates.
View Article and Find Full Text PDFBeing the principal product of photosynthesis, sucrose is involved in many metabolic processes in plants. As magnesium (Mg) is phloem mobile, an inverse relationship between Mg shortage and sugar accumulation in leaves is often observed. Mg deficiency effects on carbohydrate contents and invertase activities were determined in Sulla carnosa Desf.
View Article and Find Full Text PDFX-Intrinsic Proteins (XIP) were recently identified in a narrow range of plants as a full clade within the aquaporins. These channels reportedly facilitate the transport of a wide range of hydrophobic solutes. The functional roles of XIP in planta remain poorly identified.
View Article and Find Full Text PDFRoot high plasticity is an adaptation to its changing environment. Water deficit impairs growth, leading to sugar accumulation in leaves, part of which could be available to roots via sucrose (Suc) phloem transport. Phloem loading is widely described in Arabidopsis (Arabidopsis thaliana), while unloading in roots is less understood.
View Article and Find Full Text PDFSugar has only recently been identified as a key player in triggering bud outgrowth, while hormonal control of bud outgrowth is already well established. To get a better understanding of sugar control, the present study investigated how sugar availability modulates the hormonal network during bud outgrowth in Rosa hybrida. Other plant models, for which mutants are available, were used when necessary.
View Article and Find Full Text PDFQuebrachitol is a cyclic polyol and, along with sucrose, is one of the main sugars in Hevea latex. However, in contrast to sucrose, the mechanism and regulation of quebrachitol absorption is still unknown. Screening a latex-derived cDNA library using polyol transporter-specific probes, two full-length cDNAs were isolated, and named HbPLT1 and HbPLT2 (for Hevea brasiliensis polyol transporter 1 and 2, respectively).
View Article and Find Full Text PDFA second mannitol transporter, AgMaT2, was identified in celery (Apium graveolens L. var. dulce), a species that synthesizes and transports mannitol.
View Article and Find Full Text PDF