Ethical practice is a vital component in neuroscience innovation, and that practice must reflect the interests of society. However, truly ethical and responsible innovation may require moving beyond current theory toward more creative and imaginative approaches. Here, we present neuroethics hackathons as a case study in bridging theory to practice.
View Article and Find Full Text PDFRobust GABA-mediated inhibitory postsynaptic currents (IPSCs) in neurons of the thalamic relay (TC) nuclei are important in sustaining oscillatory activity within thalamic and thalamocortical circuits. The biophysical properties and pharmacological sensitivities of these IPSCs both depend on the subunit combination of postsynaptic gamma-aminobutyric acid-A (GABA(A)) receptors. Recombinant GABA(A) receptors containing the delta subunit (heavily expressed in TC nuclei) have been shown to exhibit slowed desensitization rates and high affinity for GABA in heterologous expression systems.
View Article and Find Full Text PDFThalamic relay neurons express high levels of T-type Ca(2+) channels, which support the generation of robust burst discharges. This intrinsically mediated form of phasic spike firing is thought to be critical in the generation of slow (3-4 Hz) synchronous oscillatory activity of absence epilepsy. Recordings made from brain slices or whole animals have shown that slow synchronous absence-like activity can be abolished when Ca(2+)-dependent burst firing in relay neurons is interrupted by the pharmacological or genetic inactivation of T-channels.
View Article and Find Full Text PDFFast spiking (FS), GABAergic neurons of the reticular thalamic nucleus (RTN) are capable of firing high-frequency trains of brief action potentials, with little adaptation. Studies in recombinant systems have shown that high-voltage-activated K(+) channels containing the Kv3.1 and/or Kv3.
View Article and Find Full Text PDFNeuronal rhythmic activities within thalamocortical circuits range from partially synchronous oscillations during normal sleep to hypersynchrony associated with absence epilepsy. It has been proposed that recurrent inhibition within the thalamic reticular nucleus serves to reduce synchrony and thus prevents seizures. Inhibition and synchrony in slices from mice devoid of the gamma-aminobutyric acid type-A (GABAA) receptor beta3 subunit were examined, because in rodent thalamus, beta3 is largely restricted to reticular nucleus.
View Article and Find Full Text PDF