The neurodegenerative progression of Parkinson's disease affects brain structure and function and, concomitantly, alters the topological properties of brain networks. The network alteration accompanied by motor impairment and the duration of the disease has not yet been clearly demonstrated in the disease progression. In this study, we aim to resolve this problem with a modeling approach using the reduced Jansen-Rit model applied to large-scale brain networks derived from cross-sectional MRI data.
View Article and Find Full Text PDFEffective connectivity (EC) refers to directional or causal influences between interacting neuronal populations or brain regions and can be estimated from functional magnetic resonance imaging (fMRI) data via dynamic causal modeling (DCM). In contrast to functional connectivity, the impact of data processing varieties on DCM estimates of task-evoked EC has hardly ever been addressed. We therefore investigated how task-evoked EC is affected by choices made for data processing.
View Article and Find Full Text PDFThe 2023 European Respiratory Society Congress took place on a hybrid platform, with participants joining online and in-person in Milan, Italy. The congress welcomed over 20 000 attendees, bringing together exciting updates in respiratory science and medicine from around the world. In this article, early career members of Assembly 10 (Respiratory Infections) summarise a selection of sessions across a broad range of topics, including presentations on bronchiectasis, nontuberculous mycobacteria, tuberculosis, cystic fibrosis and coronavirus disease 2019.
View Article and Find Full Text PDFSimulated whole-brain connectomes demonstrate enhanced inter-individual variability depending on the data processing and modelling approach. By considering the human brain connectome as an individualized attribute, we investigate how empirical and simulated whole-brain connectome-derived features can be utilized to classify patients with Parkinson's disease against healthy controls in light of varying data processing and model validation. To this end, we applied simulated blood oxygenation level-dependent signals derived by a whole-brain dynamical model simulating electrical signals of neuronal populations to reveal differences between patients and controls.
View Article and Find Full Text PDFDynamical whole-brain models were developed to link structural (SC) and functional connectivity (FC) together into one framework. Nowadays, they are used to investigate the dynamical regimes of the brain and how these relate to behavioral, clinical and demographic traits. However, there is no comprehensive investigation on how reliable and subject specific the modeling results are given the variability of the empirical FC.
View Article and Find Full Text PDFSimulating the resting-state brain dynamics via mathematical whole-brain models requires an optimal selection of parameters, which determine the model's capability to replicate empirical data. Since the parameter optimization via a grid search (GS) becomes unfeasible for high-dimensional models, we evaluate several alternative approaches to maximize the correspondence between simulated and empirical functional connectivity. A dense GS serves as a benchmark to assess the performance of four optimization schemes: Nelder-Mead Algorithm (NMA), Particle Swarm Optimization (PSO), Covariance Matrix Adaptation Evolution Strategy (CMAES) and Bayesian Optimization (BO).
View Article and Find Full Text PDFObjective: The aim: To establish the effectiveness of thromboelastography (TEG) and tranexamic acid (TXA) for prognosis and prevention of early postpartum period bleedings (PPB) for postpartum women with idiopathic arterial hypotension (IAH).
Patients And Methods: Materials and methods: Coagulogical research was conducted (coaugologram screening, dynamic function of platelets under the influence of adenosine diphosphate (ADP) (visual assessment), measurement of soluble fibrin-monomer complexes (FMC) and TEG of 36 in parturient women during the I chilbirth period with arterial hypotension. 14 parturient women with normal fibrinolysis were included into the first observation group; The second group includes 22 parturient women with TEG results which show signs of hyperfibrinolysis.
Recent developments of whole-brain models have demonstrated their potential when investigating resting-state brain activity. However, it has not been systematically investigated how alternating derivations of the empirical structural and functional connectivity, serving as the model input, from MRI data influence modeling results. Here, we study the influence from one major element: the brain parcellation scheme that reduces the dimensionality of brain networks by grouping thousands of voxels into a few hundred brain regions.
View Article and Find Full Text PDFModern approaches to investigate complex brain dynamics suggest to represent the brain as a functional network of brain regions defined by a brain atlas, while edges represent the structural or functional connectivity among them. This approach is also utilized for mathematical modeling of the resting-state brain dynamics, where the applied brain parcellation plays an essential role in deriving the model network and governing the modeling results. There is however no consensus and empirical evidence on how a given brain atlas affects the model outcome, and the choice of parcellation is still rather arbitrary.
View Article and Find Full Text PDFDynamical modeling of the resting-state brain dynamics essentially relies on the empirical neuroimaging data utilized for the model derivation and validation. There is however still no standardized data processing for magnetic resonance imaging pipelines and the structural and functional connectomes involved in the models. In this study, we thus address how the parameters of diffusion-weighted data processing for structural connectivity (SC) can influence the validation results of the whole-brain mathematical models informed by SC.
View Article and Find Full Text PDFWe report the phenomenon of frequency clustering in a network of Hodgkin-Huxley neurons with spike timing-dependent plasticity. The clustering leads to a splitting of a neural population into a few groups synchronized at different frequencies. In this regime, the amplitude of the mean field undergoes low-frequency modulations, which may contribute to the mechanism of the emergence of slow oscillations of neural activity observed in spectral power of local field potentials or electroencephalographic signals at high frequencies.
View Article and Find Full Text PDFAdaptive deep brain stimulation (aDBS) is a closed-loop method, where high-frequency DBS is turned on and off according to a feedback signal, whereas conventional high-frequency DBS (cDBS) is delivered permanently. Using a computational model of subthalamic nucleus and external globus pallidus, we extend the concept of adaptive stimulation by adaptively controlling not only continuous, but also demand-controlled stimulation. Apart from aDBS and cDBS, we consider continuous pulsatile linear delayed feedback stimulation (cpLDF), specifically designed to induce desynchronization.
View Article and Find Full Text PDFFront Syst Neurosci
January 2019
Over the past years, nonlinear dynamical models have significantly contributed to the general understanding of brain activity as well as brain disorders. Appropriately validated and optimized mathematical models can be used to mechanistically explain properties of brain structure and neuronal dynamics observed from neuroimaging data. A thorough exploration of the model parameter space and hypothesis testing with the methods of nonlinear dynamical systems and statistical physics can assist in classification and prediction of brain states.
View Article and Find Full Text PDFDemand-controlled deep brain stimulation (DBS) appears to be a promising approach for the treatment of Parkinson's disease (PD) as revealed by computational, pre-clinical and clinical studies. Stimulation delivery is adapted to brain activity, for example, to the amount of neuronal activity considered to be abnormal. Such a closed-loop stimulation setup might help to reduce the amount of stimulation current, thereby maintaining therapeutic efficacy.
View Article and Find Full Text PDFComputationally it was shown that desynchronizing delayed feedback stimulation methods are effective closed-loop techniques for the control of synchronization in ensembles of interacting oscillators. We here computationally design stimulation signals for electrical stimulation of neuronal tissue that preserve the desynchronizing delayed feedback characteristics and comply with mandatory charge deposit-related safety requirements. For this, the amplitude of the high-frequency (HF) train of biphasic charge-balanced pulses used by the standard HF deep brain stimulation (DBS) is modulated by the smooth feedback signals.
View Article and Find Full Text PDFHigh-frequency (HF) deep brain stimulation (DBS) is the gold standard for the treatment of medically refractory movement disorders like Parkinson's disease, essential tremor, and dystonia, with a significant potential for application to other neurological diseases. The standard setup of HF DBS utilizes an open-loop stimulation protocol, where a permanent HF electrical pulse train is administered to the brain target areas irrespectively of the ongoing neuronal dynamics. Recent experimental and clinical studies demonstrate that a closed-loop, adaptive DBS might be superior to the open-loop setup.
View Article and Find Full Text PDFSpike timing-dependent plasticity is a fundamental adaptation mechanism of the nervous system. It induces structural changes of synaptic connectivity by regulation of coupling strengths between individual cells depending on their spiking behavior. As a biophysical process its functioning is constantly subjected to natural fluctuations.
View Article and Find Full Text PDFDesynchronizing stimulation techniques were developed to specifically counteract abnormal neuronal synchronization relevant to several neurological and psychiatric disorders. The goal of our approach is to achieve an anti-kindling, where the affected neural networks unlearn abnormal synaptic connectivity and, hence, abnormal neuronal synchrony, by means of desynchronizing stimulation, in particular, Coordinated Reset (CR) stimulation. As known from neuroscience, psychology and education, learning effects can be enhanced by means of the spacing principle, i.
View Article and Find Full Text PDFIn the nervous system, synchronization processes play an important role, e.g., in the context of information processing and motor control.
View Article and Find Full Text PDFBackground: The discovery of abnormal synchronization of neuronal activity in the basal ganglia in Parkinson's disease (PD) has prompted the development of novel neuromodulation paradigms. Coordinated reset neuromodulation intends to specifically counteract excessive synchronization and to induce cumulative unlearning of pathological synaptic connectivity and neuronal synchrony.
Methods: In this prospective case series, six PD patients were evaluated before and after coordinated reset neuromodulation according to a standardized protocol that included both electrophysiological recordings and clinical assessments.
Intuitively one might expect independent noise to be a powerful tool for desynchronizing a population of synchronized neurons. We here show that, intriguingly, for oscillatory neural populations with adaptive synaptic weights governed by spike timing-dependent plasticity (STDP) the opposite is true. We found that the mean synaptic coupling in such systems increases dynamically in response to the increase of the noise intensity, and there is an optimal noise level, where the amount of synaptic coupling gets maximal in a resonance-like manner as found for the stochastic or coherence resonances, although the mechanism in our case is different.
View Article and Find Full Text PDFIn this computational study we investigate coordinated reset (CR) neuromodulation designed for an effective control of synchronization by multi-site stimulation of neuronal target populations. This method was suggested to effectively counteract pathological neuronal synchrony characteristic for several neurological disorders. We study how many stimulation sites are required for optimal CR-induced desynchronization.
View Article and Find Full Text PDF