Publications by authors named "Popovich P"

. Macrophages and astrocytes play a crucial role in the aftermath of a traumatic spinal cord injury (SCI). Infiltrating macrophages adopt a pro-inflammatory phenotype while resident astrocytes adopt a neurotoxic phenotype at the injury site, both of which contribute to neuronal death and inhibit axonal regeneration.

View Article and Find Full Text PDF

Robust structural remodeling and synaptic plasticity occurs within spinal autonomic circuitry after severe high-level spinal cord injury (SCI). As a result, normally innocuous visceral or somatic stimuli elicit uncontrolled activation of spinal sympathetic reflexes that contribute to systemic disease and organ-specific pathology. How hyperexcitable sympathetic circuitry forms is unknown, but local cues from neighboring glia likely help mold these maladaptive neuronal networks.

View Article and Find Full Text PDF
Article Synopsis
  • * SCI individuals face a higher risk of severe diabetes and cardiovascular diseases compared to the general population, leading to potentially life-threatening complications such as strokes and heart attacks.
  • * Research comparing lean rats with SCI to obese rats shows that SCI can produce MetS symptoms that are equal to or more severe than those seen in diet-induced obesity, emphasizing the complex metabolic challenges faced by individuals with SCI, especially if they were obese prior to the injury.
View Article and Find Full Text PDF
Article Synopsis
  • Spinal cord injury (SCI) leads to issues with motor and sensory functions, and often results in gut problems like gastrointestinal complications and neurogenic bowel, affecting quality of life.
  • Research shows that high cervical SCI causes temporary gut imbalance (dysbiosis) which contributes to ongoing GI issues and hinders recovery.
  • Probiotic treatment can improve gut health and respiratory function post-SCI by reducing inflammation and enhancing nerve regeneration, highlighting the gut microbiome's potential as a treatment target for better recovery.
View Article and Find Full Text PDF

An incomplete mechanistic understanding of skeletal muscle wasting early after spinal cord injury (SCI) precludes targeted molecular interventions. Here, we demonstrated systemic wasting that also affected innervated nonparalyzed (supralesional) muscles and emerged within 1 week after experimental SCI in mice. Systemic muscle wasting caused muscle weakness, affected fast type 2 myofibers preferentially, and became exacerbated after high (T3) compared with low (T9) thoracic paraplegia, indicating lesion level-dependent ("neurogenic") mechanisms.

View Article and Find Full Text PDF

Spinal cord injury (SCI) affects hundreds of thousands of people in the United States, and while some effects of the injury are broadly recognized (deficits to locomotion, fine motor control, and quality of life), the systemic consequences of SCI are less well-known. The spinal cord regulates systemic immunological and visceral functions; this control is often disrupted by the injury, resulting in viscera including the gut, spleen, liver, bone marrow, and kidneys experiencing local tissue inflammation and physiological dysfunction. The extent of pathology depends on the injury level, severity, and time post-injury.

View Article and Find Full Text PDF

Our prior work examining endogenous repair after spinal cord injury (SCI) in mice revealed that large numbers of new oligodendrocytes (OLs) are generated in the injured spinal cord, with peak oligodendrogenesis between 4 and 7 weeks post-injury (wpi). We also detected new myelin formation over 2 months post-injury (mpi). Our current work significantly extends these results, including quantification of new myelin through 6 mpi and concomitant examination of indices of demyelination.

View Article and Find Full Text PDF

Background And Objectives: Spinal cord injury (SCI) disrupts the fine-balanced interaction between the CNS and immune system and can cause maladaptive aberrant immune responses. The study examines emerging autoantibody synthesis after SCI with binding to conformational spinal cord epitopes and surface peptides located on the intact neuronal membrane.

Methods: This is a prospective longitudinal cohort study conducted in acute care and inpatient rehabilitation centers in conjunction with a neuropathologic case-control study in archival tissue samples ranging from acute injury (baseline) to several months thereafter (follow-up).

View Article and Find Full Text PDF

Microglial research has advanced considerably in recent decades yet has been constrained by a rolling series of dichotomies such as "resting versus activated" and "M1 versus M2." This dualistic classification of good or bad microglia is inconsistent with the wide repertoire of microglial states and functions in development, plasticity, aging, and diseases that were elucidated in recent years. New designations continuously arising in an attempt to describe the different microglial states, notably defined using transcriptomics and proteomics, may easily lead to a misleading, although unintentional, coupling of categories and functions.

View Article and Find Full Text PDF

Traumatic spinal cord injury (SCI) triggers a neuro-inflammatory response dominated by tissue-resident microglia and monocyte derived macrophages (MDMs). Since activated microglia and MDMs are morphologically identical and express similar phenotypic markers in vivo, identifying injury responses specifically coordinated by microglia has historically been challenging. Here, we pharmacologically depleted microglia and use anatomical, histopathological, tract tracing, bulk and single cell RNA sequencing to reveal the cellular and molecular responses to SCI controlled by microglia.

View Article and Find Full Text PDF

Pulmonary infection is a leading cause of morbidity and mortality after spinal cord injury (SCI). Although SCI causes atrophy and dysfunction in primary and secondary lymphoid tissues with a corresponding decrease in the number and function of circulating leukocytes, it is unknown whether this SCI-dependent systemic immune suppression also affects the unique tissue-specific antimicrobial defense mechanisms that protect the lung. In this study, we tested the hypothesis that SCI directly impairs pulmonary immunity and subsequently increases the risk for developing pneumonia.

View Article and Find Full Text PDF

Glucocorticoid receptors (GRs), part of the nuclear receptor superfamily of transcription factors (TFs), are ubiquitously expressed in all cell types and regulate cellular responses to glucocorticoids (e.g., cortisol in humans; corticosterone in rodents).

View Article and Find Full Text PDF

Infections impair neurological outcome and increase mortality after spinal cord injury (SCI). Emerging data show that pathogens more easily infect individuals with SCI because SCI disrupts neural and humoral control of immune cells, culminating with the development of "SCI-induced immune deficiency syndrome" (SCI-IDS). Here, we review data that implicate autonomic dysfunction and impaired neuroendocrine signaling as key determinants of SCI-IDS.

View Article and Find Full Text PDF

Microglial control of activity-dependent plasticity and synaptic remodeling in neuronal networks has been the subject of intense research in the past several years. Although microglia-neuron interactions have been extensively studied, less is known about how microglia influence astrocyte-dependent control over neuronal structure and function. Here, we explored a role for microglia in regulating the structure and function of the astrocyte syncytium in mouse hippocampus.

View Article and Find Full Text PDF

Selective neuronal vulnerability to protein aggregation is found in many neurodegenerative diseases including Alzheimer's disease (AD). Understanding the molecular origins of this selective vulnerability is, therefore, of fundamental importance. Tau protein aggregates have been found in Wolframin (WFS1)-expressing excitatory neurons in the entorhinal cortex, one of the earliest affected regions in AD.

View Article and Find Full Text PDF

Traumatic spinal cord injury (SCI) above the major spinal sympathetic outflow (T6 level) disinhibits sympathetic neurons from supraspinal control, causing systems-wide "dysautonomia." We recently showed that remarkable structural remodeling and plasticity occurs within spinal sympathetic circuitry, creating abnormal sympathetic reflexes that exacerbate dysautonomia over time. As an example, thoracic VGluT2 spinal interneurons (SpINs) become structurally and functionally integrated with neurons that comprise the spinal-splenic sympathetic network and immunological dysfunction becomes progressively worse after SCI.

View Article and Find Full Text PDF

Central nervous system trauma is a common cause of morbidity and mortality. Additionally, these injuries frequently occur in younger individuals, leading to lifetime expenses for patients and caregivers and the loss of opportunity for society. Despite this prevalence and multiple attempts to design a neuroprotectant, clinical trials for a pharmacological agent for the treatment of traumatic brain injury (TBI) or spinal cord injury (SCI) have provided disappointing results.

View Article and Find Full Text PDF

Emerging data indicate that gut dysbiosis contributes to many human diseases, including several comorbidities that develop after traumatic spinal cord injury (SCI). To date, all analyses of SCI-induced gut dysbiosis have used 16S rRNA amplicon sequencing. This technique has several limitations, including being susceptible to taxonomic "blind spots," primer bias, and an inability to profile microbiota functions or identify viruses.

View Article and Find Full Text PDF

The current high obesity rates mean that neurological injuries are increasingly sustained on a background of systemic pathology, including liver inflammation, which likely has a negative impact on outcomes. Because obesity involves complex pathology, the effect of hepatic inflammation alone on neurological recovery is unknown. Thus, here we used a gain-of-function model to test if liver inflammation worsens outcome from spinal cord injury (SCI) in rats.

View Article and Find Full Text PDF

Spinal cord injury (SCI) has a complex pathophysiology. Following the initial physical trauma to the spinal cord, which may cause vascular disruption, hemorrhage, mechanical injury to neural structures and necrosis, a series of biomolecular cascades is triggered to evoke secondary injury. Neuroinflammation plays a major role in the secondary injury after traumatic SCI.

View Article and Find Full Text PDF

17β-Estradiol (E2) confers neuroprotection in preclinical models of spinal cord injury when administered systemically. The goal of this study was to apply E2 locally to the injured spinal cord for a sustained duration using poly(pro-E2) film biomaterials. Following contusive spinal cord injury in adult male mice, poly(pro-E2) films were implanted subdurally and neuroprotection was assessed using immunohistochemistry 7 days after injury and implantation.

View Article and Find Full Text PDF
Article Synopsis
  • After a spinal cord injury, normal sensory signals can cause harmful sympathetic nerve responses, leading to a condition called dysautonomia.
  • Research shows that structural changes in the spinal autonomic circuitry contribute to these abnormal reflexes.
  • Treating mice early with the drug gabapentin can prevent these reflex changes and reduce the symptoms of dysautonomia, even maintaining benefits after treatment ends, suggesting its potential use for preventing dysautonomia in high-level spinal cord injury patients.
View Article and Find Full Text PDF

Although lesion size is widely considered to be the most reliable predictor of outcome after CNS injury, lesions of comparable size can produce vastly different magnitudes of functional impairment and subsequent recovery. This neuroanatomical-functional paradox is likely to contribute to the many failed attempts to independently replicate findings from animal models of neurotrauma. In humans, the analogous clinical-radiological paradox could explain why individuals with similar injuries can respond differently to rehabilitation.

View Article and Find Full Text PDF