Publications by authors named "Popkova A"

Epithelial furrowing is a fundamental morphogenetic process during gastrulation, neurulation, and body shaping. A furrow often results from a fold that propagates along a line. How fold formation and propagation are controlled and driven is poorly understood.

View Article and Find Full Text PDF

In the last decade, the development of new materials that absorb electromagnetic radiation (EMR) has received research interest as they can significantly enhance the performance of electronic devices and prevent adverse effects caused by electromagnetic pollution. Electromagnetic radiation absorbers with a low weight and small thickness of the absorber layer, good absorption capacity, and a wide frequency response bandwidth are highly demanded. Here, for the first time, the properties of polymer nanocomposites FeCoCr/C synthesized by doping FeCoCr alloy nanoparticles into a polymer matrix of pyrolyzed polyacrylonitrile are investigated.

View Article and Find Full Text PDF

Unique natural objects, such as the caves of the Gobustan National Historical and Artistic Preserve, are also of great cultural and historical value due to rock art and sites of ancient people. A favorable microclimate makes these habitats convenient for colonization by microbiota, including phototrophs. In arid regions with intense seasonal fluctuations of microclimatic parameters, the conditions for survival are the least favorable; therefore, it becomes especially important to determine the composition of communities that are the most adapted to specific conditions.

View Article and Find Full Text PDF

The present study aims to investigate the effectiveness of bioformulations based on endophytic fungi to control apple scab and Valsa canker disease in two orchards in the Aurès region (Algeria). In both orchards, the results showed that the treatment of senescent apple leaves by invert emulsions containing and harmed the ascogenesis of winter forms of by reducing the number of ascospore-ejecting asci, the number of morphologically mature asci, and a considerable increase in the immature asci number. This antifungal activity was more essential in soil-incorporated leaves, showing the importance of the combination of treatments with cultural practices to efficiently control the apple scab disease.

View Article and Find Full Text PDF
Article Synopsis
  • Cell apical constriction, driven by actomyosin contraction, plays a key role in tissue folding during embryo development, particularly in Drosophila.
  • While past studies suggest that these contraction forces might not be enough on their own to cause tissue folding, the current research indicates that the balance of forces at the tissue's surface is crucial for this process.
  • Using 3D computational modeling and image analysis of the embryos, the study demonstrates that it's the collective force balance, rather than just individual cell shape changes, that leads to the formation of the furrow and the start of gastrulation.
View Article and Find Full Text PDF

SnS and SnSe have recently been shown to have a wide range of applications in photonic and optoelectronic devices. However, because of incomplete knowledge about their optical characteristics, the use of SnS and SnSe in optical engineering remains challenging. Here, we addressed this problem by establishing SnS and SnSe linear and nonlinear optical properties in the broad (300-3300 nm) spectral range.

View Article and Find Full Text PDF

Tissue elongation is known to be controlled by oriented cell division, elongation, migration and rearrangement. While these cellular processes have been extensively studied, new emerging supracellular mechanisms driving tissue extension have recently been unveiled. Tissue rotation and actomyosin contractions have been shown to be key processes driving egg chamber elongation.

View Article and Find Full Text PDF

Actomyosin supracellular networks emerge during development and tissue repair. These cytoskeletal structures are able to generate large scale forces that can extensively remodel epithelia driving tissue buckling, closure and extension. How supracellular networks emerge, are controlled and mechanically work still remain elusive.

View Article and Find Full Text PDF

High-throughput screens allow us to understand how transcription factors trigger developmental processes, including cell specification. A major challenge is identification of their binding sites because feedback loops and homeostatic interactions may mask the direct impact of those factors in transcriptome analyses. Moreover, this approach dissects the downstream signaling cascades and facilitates identification of conserved transcriptional programs.

View Article and Find Full Text PDF

The Gcm/Glide transcription factor is transiently expressed and required in the Drosophila nervous system. Threshold Gcm/Glide levels control the glial versus neuronal fate choice, and its perdurance triggers excessive gliogenesis, showing that its tight and dynamic regulation ensures the proper balance between neurons and glia. Here, we present a genetic screen for potential gcm/glide interactors and identify genes encoding chromatin factors of the Trithorax and of the Polycomb groups.

View Article and Find Full Text PDF

In Drosophila, the transcription factor Gcm/Glide plays a key role in cell fate determination and cellular differentiation. In light of its crucial biological impact, major efforts have been put for analyzing its properties as master regulator, from both structural and functional points of view. However, the lack of efficient antibodies specific to the Gcm/Glide protein precluded thorough analyses of its regulation and activity in vivo.

View Article and Find Full Text PDF

The neural stem cells that give rise to the neural lineages of the brain can generate their progeny directly or through transit amplifying intermediate neural progenitor cells (INPs). The INP-producing neural stem cells in Drosophila are called type II neuroblasts, and their neural progeny innervate the central complex, a prominent integrative brain center. Here we use genetic lineage tracing and clonal analysis to show that the INPs of these type II neuroblast lineages give rise to glial cells as well as neurons during postembryonic brain development.

View Article and Find Full Text PDF

A new type of composite quarter-wave system with adjustable parameters has been proposed and investigated experimentally. The first system is a quarter-waveplate with adjustable optical activity and the second system is a quarter-wave plate with an adjustable axis orientation.

View Article and Find Full Text PDF

Germline silencing of transposable elements is essential for the maintenance of genome integrity. Recent results indicate that this repression is largely achieved through a RNA silencing pathway that involves Piwi-interacting RNAs (piRNAs). However the repressive mechanisms are not well understood.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) and type II diabetes are major worldwide health problems. Proteinase-antiproteinase system (PAS) disbalance is known to play a significant role in COPD pathogenesis. There is increasing evidence concerning proteolysis activation as a factor of vascular complications.

View Article and Find Full Text PDF

Pleiotropic recessive mutation glass-like (gl-l) found in region 8C-10E of the X chromosome was shown to cause glass-like eyes having no boundaries between facets and a nonuniform pigment distribution in the presence of the endogenous white gene. The gl-l mutation completely inhibited expression of the mini-white transgene contained in several constructs, but the effect depended on the site of construct integration in the genome. The mutation had no effect on the expression of the white transgene having the enhancer and flanked by insulators.

View Article and Find Full Text PDF

A loss of certain heterochromatic regions (ABO loci) of various chromosomes dramatically distorts the early embryo development in the progeny of females mutant for the abnormal oocyte (abo) gene, which is located in euchromatin of chromosome 2. One ABO locus (X-ABO) is in X-chromosomal heterochromatin distal of the nucleolus organizer. A cluster of the Stellate repeats is located in the same heterochromatin block.

View Article and Find Full Text PDF

The effects of suppressors of position-effect variegation were studied in a set of euchromatin-heterochromatin rearrangements of the X chromosome accompanied by inactivation of the gene wapl. The rearrangements differed from one another in the size of the heterochromatic block adjacent to euchromatin, with the euchromatin-heterochromatin border remaining unchanged. In one rearrangement (r20), the position effect caused by a small block of adjacent heterochromatin may be determined by its interaction with the neighboring main heterochromatic region of the X chromosome.

View Article and Find Full Text PDF

Bronchial biopsies in patients with chronic bronchitis were studied histochemically, light and electron microscopically before and after conventional treatment and combined therapy (standard regimen plus He-Ne laser puncture). The conclusion is made that the combined therapy is more effective especially at early stages of the disease when irreversible sclerotic changes in the submucosa and microcirculatory bed are absent. This therapy at early stages of the disease stimulates regeneration of the surface bronchial epithelium and facilitates reversibility of initial metaplasia.

View Article and Find Full Text PDF

In thirty patients with subacute thyroiditis the authors examined cardiovascular system with the use of the ECG as the most accessible and informative enough method. The clinical and ECG alterations were compared before and after the treatment with glucocorticoids. It was established that the patients with subacute thyroiditis had clinico-electrocardiographic alterations attesting to the presence of myocardiodystrophy.

View Article and Find Full Text PDF