Gene fusions are found as cancer drivers in diverse adult and pediatric cancers. Accurate detection of fusion transcripts is essential in cancer clinical diagnostics, prognostics, and for guiding therapeutic development. Most currently available methods for fusion transcript detection are compatible with Illumina RNA-seq involving highly accurate short read sequences.
View Article and Find Full Text PDFMotivation: We propose Meltos, a novel computational framework to address the challenging problem of building tumor phylogeny trees using somatic structural variants (SVs) among multiple samples. Meltos leverages the tumor phylogeny tree built on somatic single nucleotide variants (SNVs) to identify high confidence SVs and produce a comprehensive tumor lineage tree, using a novel optimization formulation. While we do not assume the evolutionary progression of SVs is necessarily the same as SNVs, we show that a tumor phylogeny tree using high-quality somatic SNVs can act as a guide for calling and assigning somatic SVs on a tree.
View Article and Find Full Text PDFCurr Protoc Bioinformatics
June 2018
The reconstruction of cancer phylogeny trees and quantifying the evolution of the disease is a challenging task. LICHeE and BAMSE are two computational tools designed and implemented recently for this purpose. They both utilize estimated variant allele fraction of somatic mutations across multiple samples to infer the most likely cancer phylogenies.
View Article and Find Full Text PDFWe introduce GATTACA, a framework for fast unsupervised binning of metagenomic contigs. Similar to recent approaches, GATTACA clusters contigs based on their coverage profiles across a large cohort of metagenomic samples; however, unlike previous methods that rely on read mapping, GATTACA quickly estimates these profiles from kmer counts stored in a compact index. This approach can result in over an order of magnitude speedup, while matching the accuracy of earlier methods on synthetic and real data benchmarks.
View Article and Find Full Text PDFLow-cost clouds can alleviate the compute and storage burden of the genome sequencing data explosion. However, moving personal genome data analysis to the cloud can raise serious privacy concerns. Here, we devise a method named Balaur, a privacy preserving read mapper for hybrid clouds based on locality sensitive hashing and kmer voting.
View Article and Find Full Text PDFSomatic variants can be used as lineage markers for the phylogenetic reconstruction of cancer evolution. Since somatic phylogenetics is complicated by sample heterogeneity, novel specialized tree-building methods are required for cancer phylogeny reconstruction. We present LICHeE (Lineage Inference for Cancer Heterogeneity and Evolution), a novel method that automates the phylogenetic inference of cancer progression from multiple somatic samples.
View Article and Find Full Text PDFSummary: The increasing availability of high-throughput sequencing technologies has led to thousands of human genomes having been sequenced in the past years. Efforts such as the 1000 Genomes Project further add to the availability of human genome variation data. However, to date, there is no method that can map reads of a newly sequenced human genome to a large collection of genomes.
View Article and Find Full Text PDFActa Stomatol Croat
October 1981
Microbiol Parazitol Epidemiol (Bucur)
July 1974