Publications by authors named "Popat S Kumbhar"

Polycystic ovarian syndrome (PCOS) is one of the chief causes of infertility in women of reproductive age. Several drugs belonging to the oral contraceptive class have been approved for the treatment of PCOS. Nonetheless, the capability to target only a few symptoms of PCOS and fatal side effects are key hurdles to their use.

View Article and Find Full Text PDF

Nanoparticulate drug delivery systems (NDDS) based nanoformulations have emerged as promising drug delivery systems. Various NDDS-based formulations have been reported such as polymeric nanoparticles (NPs), nanoliposomes, solid lipid NPs, nanocapsules, liposomes, self-nano emulsifying drug delivery systems, pro liposomes, nanospheres, microemulsion, nanoemulsion, gold NPs, silver NPs and nanostructured lipid carrier. They have shown numerous advantages such as enhanced bioavailability, aqueous solubility, permeability, controlled release profile, and blood-brain barrier (BBB) permeability.

View Article and Find Full Text PDF

Skin cancer remains one of the most prominent types of cancer. Melanoma and non-melanoma skin cancer are commonly found together, with melanoma being the more deadly type. Skin cancer can be effectively treated with chemotherapy, which mostly uses small molecular medicines, phytoceuticals, and biomacromolecules.

View Article and Find Full Text PDF

In recent year, the research of transdermal drug delivery systems has got substantial attention towards the development of microneedles (MNs). This shift has occurred due to multifaceted advantages of MNs as they can be utilized to deliver the drug deeper to the skin with minimal invasion, offer successful delivery of drugs and biomolecules that are susceptible to degradation in gastrointestinal tract (GIT), act as biosensors, and help in monitoring the level of biomarkers in the body. These can be fabricated into different types based on their applications as well as material for fabrication.

View Article and Find Full Text PDF

Lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are among the leading causes of mortality worldwide. Cigarette smoking is among the main aetiologic factors for both ailments. These diseases share common pathogenetic mechanisms including inflammation, oxidative stress, and tissue remodelling.

View Article and Find Full Text PDF

Objective: The present study aimed to identify a safe and effective non-oncology drug cocktail as an alternative to toxic chemotherapeutics for hepatocellular carcinoma (HCC) treatment. The assessment of cytotoxicity of cocktail (as co-adjuvant) in combination with chemotherapeutic docetaxel (DTX) is also aimed. Further, we aimed to develop an oral solid self-emulsifying drug delivery system (S-SEDDS) for the simultaneous delivery of identified drugs.

View Article and Find Full Text PDF

Simvastatin (SMV) is noticed as a repurposed candidate to be effective against breast cancer (BC). However, poor solubility, dose-limiting toxicities, and side effects are critical hurdles in its use against BC. The above drawbacks necessitate the site-specific (localized) delivery of SMV via suitable nanocarriers.

View Article and Find Full Text PDF

Background: Podophyllotoxin (PPT) is a naturally occurring compound obtained from the roots of Podophyllum species, indicated for a variety of malignant tumors such as breast, lung, and liver tumors. This toxic polyphenol (PPT) exhibited significant activity against P-glycoprotein (P-gp) mediated multidrug-resistant (MDR) cancer cells. However, extremely poor water solubility, a narrow therapeutic window, and high toxicity have greatly restricted the clinical uses of PPT.

View Article and Find Full Text PDF

Mixed micelles self-assembled from two or more dissimilar block copolymers provide a direct and convenient approach to improved drug delivery. The present review is focused on mixed micelles (prepared from block copolymers only) for various drug delivery applications along with their merits over single-copolymer micelles. Presented are the physicochemical properties of mixed and single-copolymer micelles, various stimuli-responsive mixed micelles for the treatment of cancer, interesting combinations of multifunctional mixed micelles along with their in vitro and in vivo performance, and the potential of mixed micelles as a gene delivery system.

View Article and Find Full Text PDF

Mixed micelles self-assembled from two or more dissimilar block copolymers provide a direct and convenient approach to improved drug delivery. The present review is focused on mixed micelles (prepared from block copolymers only) for various drug delivery applications along with their merits over single-copolymer micelles. Presented are the physicochemical properties of mixed and single-copolymer micelles, various stimuli-responsive mixed micelles for the treatment of cancer, interesting combinations of multifunctional mixed micelles along with their in vitro and in vivo performance, and the potential of mixed micelles as a gene delivery system.

View Article and Find Full Text PDF

Background: Docetaxel (DTX) has been used to treat several types of cancers, but it has provided pharmaceutical challenges due to its poor water solubility and toxicities associated with the co-solvents (tween-80 and ethanol). Nanopolymer therapeutics can be engineered to deliver anticancer agent specifically to cancer cells, thereby leaving normal healthy cells unaffected by toxic drugs such as DTX. The objective of the present study was to synthesize the polyacrylic acid (PAA)-DTX conjugate (PAADC) and preparation of nanopolymer therapeutics such as PAADC/DSPE-mPEG2000 mixed micelles (PAADC-DP MMs).

View Article and Find Full Text PDF