Publications by authors named "Popadin K"

The recognized importance of mutational spectra in molecular evolution is yet to be fully exploited beyond human cancer studies and model organisms. The wealth of intraspecific polymorphism data in the GenBank repository, covering a broad spectrum of genes and species, presents an untapped opportunity for detailed mutational spectrum analysis. Existing methods fall short by ignoring intermediate substitutions on the inner branches of phylogenetic trees and lacking the capability for cross-species mutational comparisons.

View Article and Find Full Text PDF

The resilience of the mitochondrial genome (mtDNA) to a high mutational pressure depends, in part, on negative purifying selection in the germline. A paradigm in the field has been that such selection, at least in part, takes place in primordial germ cells (PGCs). Specifically, Floros et al.

View Article and Find Full Text PDF

Background: Aging in postmitotic tissues is associated with clonal expansion of somatic mitochondrial deletions, the origin of which is not well understood. Such deletions are often flanked by direct nucleotide repeats, but this alone does not fully explain their distribution. Here, we hypothesized that the close proximity of direct repeats on single-stranded mitochondrial DNA (mtDNA) might play a role in the formation of deletions.

View Article and Find Full Text PDF

Molybdenum cofactor deficiency type B (MOCODB; #252160) is an autosomal recessive metabolic disorder that has only been described in 37 affected patients. In this report, we describe the presence of an in-frame homozygous variant (c.471_477delTTTAAAAinsG) in the gene in an affected child, diagnosed with Ohtahara syndrome according to the clinical manifestations.

View Article and Find Full Text PDF
Article Synopsis
  • The mutational patterns of mitochondrial DNA (mtDNA) are distinct from those of nuclear DNA, and variations across different species remain poorly understood.
  • The study examines mtDNA mutations in relation to species age and generation length, discovering that species with longer generation times have a higher frequency of specific mutations (AH > GH).
  • Researchers suggest that these mutations reflect oxidative damage linked to aging and the duration of mtDNA being single-stranded during replication.
View Article and Find Full Text PDF

The A-to-G point mutation at position 3243 in the human mitochondrial genome (m.3243A > G) is the most common pathogenic mtDNA variant responsible for disease in humans. It is widely accepted that m.

View Article and Find Full Text PDF

The hypothesis that the evolution of humans involves hybridization between diverged species has been actively debated in recent years. We present the following novel evidence in support of this hypothesis: the analysis of nuclear pseudogenes of mtDNA ("NUMTs"). NUMTs are considered "mtDNA fossils" as they preserve sequences of ancient mtDNA and thus carry unique information about ancestral populations.

View Article and Find Full Text PDF

People living with human immunodeficiency virus (PLWH) have significantly increased risk for cardiovascular disease in part due to inflammation and immune dysregulation. Clonal hematopoiesis of indeterminate potential (CHIP), the age-related acquisition and expansion of hematopoietic stem cells due to leukemogenic driver mutations, increases risk for both hematologic malignancy and coronary artery disease (CAD). Since increased inflammation is hypothesized to be both a cause and consequence of CHIP, we hypothesized that PLWH have a greater prevalence of CHIP.

View Article and Find Full Text PDF

People living with human immunodeficiency virus (PLWH) have significantly increased risk for cardiovascular disease in part due to inflammation and immune dysregulation. Clonal hematopoiesis of indeterminate potential (CHIP), the age-related acquisition and expansion of hematopoietic stem cells due to leukemogenic driver mutations, increases risk for both hematologic malignancy and coronary artery disease (CAD). Since increased inflammation is hypothesized to be both a cause and consequence of CHIP, we hypothesized that PLWH have a greater prevalence of CHIP.

View Article and Find Full Text PDF

A wealth of specialized neuroendocrine command systems intercalated within the hypothalamus control the most fundamental physiological needs in vertebrates. Nevertheless, we lack a developmental blueprint that integrates the molecular determinants of neuronal and glial diversity along temporal and spatial scales of hypothalamus development. Here we combine single-cell RNA sequencing of 51,199 mouse cells of ectodermal origin, gene regulatory network (GRN) screens in conjunction with genome-wide association study-based disease phenotyping, and genetic lineage reconstruction to show that nine glial and thirty-three neuronal subtypes are generated by mid-gestation under the control of distinct GRNs.

View Article and Find Full Text PDF

Background: Mitochondria is a powerhouse of all eukaryotic cells that have its own circular DNA (mtDNA) encoding various RNAs and proteins. Somatic perturbations of mtDNA are accumulating with age thus it is of great importance to uncover the main sources of mtDNA instability. Recent analyses demonstrated that somatic mtDNA deletions depend on imperfect repeats of various nature between distant mtDNA segments.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) encodes core subunits of oxidative phosphorylation complexes and, as a result of intricate regulatory crosstalk between nuclear and mitochondrial genomes, the total number of mtDNA copies fits the requirements of each cell type. Deviations from the physiological number of mtDNA copies are expected to be deleterious and might cause some inherited diseases and normal ageing. We studied 46 obese patients with type 2 diabetes (T2DM) one year after a laparoscopic sleeve gastrectomy (LSG) and Roux-en-Y gastric bypass (RYGB).

View Article and Find Full Text PDF

Studying the genetic basis of gene expression and chromatin organization is key to characterizing the effect of genetic variability on the function and structure of the human genome. Here we unravel how genetic variation perturbs gene regulation using a dataset combining activity of regulatory elements, gene expression, and genetic variants across 317 individuals and two cell types. We show that variability in regulatory activity is structured at the intra- and interchromosomal levels within 12,583 cis-regulatory domains and 30 trans-regulatory hubs that highly reflect the local (that is, topologically associating domains) and global (that is, open and closed chromatin compartments) nuclear chromatin organization.

View Article and Find Full Text PDF

Background: Heterotachy is the variation in the evolutionary rate of aligned sites in different parts of the phylogenetic tree. It occurs mainly due to epistatic interactions among the substitutions, which are highly complex and make it difficult to study protein evolution. The vast majority of computational evolutionary approaches for studying these epistatic interactions or their evolutionary consequences in proteins require high computational time.

View Article and Find Full Text PDF

The majority of aneuploid fetuses are spontaneously miscarried. Nevertheless, some aneuploid individuals survive despite the strong genetic insult. Here, we investigate if the survival probability of aneuploid fetuses is affected by the genome-wide burden of slightly deleterious variants.

View Article and Find Full Text PDF

Copy-number changes in 16p11.2 contribute significantly to neuropsychiatric traits. Besides the 600 kb BP4-BP5 CNV found in 0.

View Article and Find Full Text PDF

The importance of natural gene expression variation for human behavior is undisputed, but its impact on circadian physiology remains mostly unexplored. Using umbilical cord fibroblasts, we have determined by genome-wide association how common genetic variation impacts upon cellular circadian function. Gene set enrichment points to differences in protein catabolism as one major source of clock variation in humans.

View Article and Find Full Text PDF

The data and methods presented in this article are supplementing the research article "Integration of mtDNA pseudogenes into the nuclear genome coincides with speciation of the human genus. A hypothesis", DOI: 10.1016/j.

View Article and Find Full Text PDF

Fragments of mitochondrial DNA are known to get inserted into nuclear DNA to form NUMTs, i.e. nuclear pseudogenes of the mtDNA.

View Article and Find Full Text PDF

The mtDNA mutator mouse lacks the proofreading capacity of the sole mtDNA polymerase, leading to accumulation of somatic mtDNA mutations, and a profound premature aging phenotype including elevated oxidative stress and apoptosis, and reduced mitochondrial function. We have previously reported that endurance exercise alleviates the aging phenotype in the mutator mice, reduces oxidative stress, and enhances mitochondrial biogenesis. Here we summarize our findings, with the emphasis on the central role of p53 in these adaptations.

View Article and Find Full Text PDF

O1 The metabolomics approach to autism: identification of biomarkers for early detection of autism spectrum disorder A. K. Srivastava, Y.

View Article and Find Full Text PDF

Basal cell carcinoma (BCC) of the skin is the most common malignant neoplasm in humans. BCC is primarily driven by the Sonic Hedgehog (Hh) pathway. However, its phenotypic variation remains unexplained.

View Article and Find Full Text PDF