There is increasing concern about tree mortality around the world due to climatic extremes and associated shifts in pest and pathogen dynamics. Yet, empirical studies addressing the interactive effect of biotic and abiotic stress on plants are very rare. Therefore, in this study, we examined the interaction between drought stress and a canker pathogen, Quambalaria coyrecup, on the eucalypt - Corymbia calophylla (marri), which is experiencing increasing drought stress.
View Article and Find Full Text PDFBackground And Aims: A worldwide increase in tree decline and mortality has been linked to climate change and, where these represent foundation species, this can have important implications for ecosystem functions. This study tests a combined approach of phylogeographic analysis and species distribution modelling to provide a climate change context for an observed decline in crown health and an increase in mortality in Eucalyptus wandoo, an endemic tree of south-western Australia.
Methods: Phylogeographic analyses were undertaken using restriction fragment length polymorphism analysis of chloroplast DNA in 26 populations across the species distribution.
Recent advances in modelling the architecture and function of the plant hydraulic network have led to improvements in predicting and interpreting the consequences of functional trait variation on CO2 uptake and water loss. We build upon one such model to make novel predictions for scaling of the total specific hydraulic conductance of leaves and shoots (kL and kSH , respectively) and variation in the partitioning of hydraulic conductance. Consistent with theory, we observed isometric (slope = 1) scaling between kL and kSH across several independently collected datasets and a lower ratio of kL and kSH , termed the leaf-to-shoot conductance ratio (CLSCR ), in arid environments and in woody species.
View Article and Find Full Text PDFLeaf dark respiration (Rdark ) is an important yet poorly quantified component of the global carbon cycle. Given this, we analyzed a new global database of Rdark and associated leaf traits. Data for 899 species were compiled from 100 sites (from the Arctic to the tropics).
View Article and Find Full Text PDFBackground And Aims: The dynamic structural development of plants can be seen as a strategy for exploiting the limited resources available within their environment, and we would expect that evolution would lead to efficient strategies that reduce costs while maximizing resource acquisition. In particular, perennial species endemic to habitats with shallow soils in seasonally dry environments have been shown to have a specialized root system morphology that may enhance access to water resources in the underlying rock. This study aimed to explore these hypotheses by applying evolutionary algorithms to a functional-structural root growth model.
View Article and Find Full Text PDFSouthwest Australian Banksia woodlands are highly diverse plant communities that are threatened by drought- or temperature-induced mortality due to the region's changing climate. We examined water relations in dominant Banksia menziesii R. Br.
View Article and Find Full Text PDFClimate change and anthropogenic land use are increasingly affecting the resilience of natural ecosystems. In Mediterranean ecoregions, forests and woodlands have shown progressive declines in health. This study focuses on the decline of an endemic woodland tree species, Eucalyptus wandoo (wandoo), occurring in the biodiversity hotspot of southwest Western Australia.
View Article and Find Full Text PDFBackground And Aims: Worldwide, many plant species are confined to open, shallow-soil, rocky habitats. Although several hypotheses have been proposed to explain this habitat specificity, none has been convincing. We suggest that the high level of endemism on shallow soils is related to the edaphic specialization needed to survive in these often extremely drought-prone habitats.
View Article and Find Full Text PDFWe quantified the biomass allocation patterns to leaves, stems and roots in vegetative plants, and how this is influenced by the growth environment, plant size, evolutionary history and competition. Dose-response curves of allocation were constructed by means of a meta-analysis from a wide array of experimental data. They show that the fraction of whole-plant mass represented by leaves (LMF) increases most strongly with nutrients and decreases most strongly with light.
View Article and Find Full Text PDFThere is a variety of approaches to reduce the complexity of the proteome on the basis of functional small molecule-protein interactions. We describe a generic approach based on trifunctional Capture Compounds, in which the initial equilibrium-driven interaction between a small molecule probe and target proteins is irreversibly fixed upon photo-crosslinking between an independent photo-activable reactivity function of the Capture Compound and the surface of the target protein(s). Subsequently, Capture Compound - protein conjugates are isolated from complex biological mixtures via the sorting function of the Capture Compound.
View Article and Find Full Text PDFThere is a variety of approaches to reduce the complexity of the proteome on the basis of functional small molecule-protein interactions such as affinity chromatography (1) or Activity Based Protein Profiling (2). Trifunctional Capture Compounds (CCs, Figure 1A) (3) are the basis for a generic approach, in which the initial equilibrium-driven interaction between a small molecule probe (the selectivity function, here S-adenosyl-(L)-homocysteine, SAH, Figure 1A) and target proteins is irreversibly fixed upon photo-crosslinking between an independent photo-activable reactivity function (here a phenylazide) of the CC and the surface of the target proteins. The sorting function (here biotin) serves to isolate the CC - protein conjugates from complex biological mixtures with the help of a solid phase (here streptavidin magnetic beads).
View Article and Find Full Text PDFClimate change is altering the availability of resources and the conditions that are crucial to plant performance. One way plants will respond to these changes is through environmentally induced shifts in phenotype (phenotypic plasticity). Understanding plastic responses is crucial for predicting and managing the effects of climate change on native species as well as crop plants.
View Article and Find Full Text PDFUnderstanding the interplay of different cellular proteins and their substrates is of major interest in the postgenomic era. For this purpose, selective isolation and identification of proteins from complex biological samples is necessary and targeted isolation of enzyme families is a challenging task. Over the last years, methods like activity-based protein profiling (ABPP) and capture compound mass spectrometry (CCMS) have been developed to reduce the complexity of the proteome by means of protein function in contrast to standard approaches, which utilize differences in physical properties for protein separation.
View Article and Find Full Text PDFWorldwide, many rare plant species occur in shallow-soil, drought-prone environments. For most of these species, the adaptations required to be successful in their own habitats, as well as their possible consequences for establishment and persistence in others, are unknown. Here, two rare Hakea (Proteaceae) species confined to shallow-soil communities in mediterranean-climate south-western Australia were compared with four congeners commonly occurring on deeper soils.
View Article and Find Full Text PDFLeaf trait data were compiled for 258 Australian plant species from several habitat types dominated by woody perennials. Specific leaf area (SLA), photosynthetic capacity, dark respiration rate and leaf nitrogen (N) and phosphorus (P) concentrations were positively correlated with one another and negatively correlated with average leaf lifespan. These trait relationships were consistent with previous results from global datasets.
View Article and Find Full Text PDFBackground And Aims: Rapid leaf area expansion is a desirable trait in the early growth stages of cereal crops grown in low-rainfall areas. In this study, the traits associated with inherent variation in early leaf area expansion rates have been investigated in two wheat species (Triticum aestivum and T. durum) and three of its wild relatives (Aegilops umbellulata, A.
View Article and Find Full Text PDFBringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients and dry mass in leaves, and operates largely independently of growth form, plant functional type or biome. Categories along the spectrum would, in general, describe leaf economic variation at the global scale better than plant functional types, because functional types overlap substantially in their leaf traits.
View Article and Find Full Text PDFGynodioecy is a breeding system in which hermaphrodites coexist with male steriles. Theoretical models predict that without any compensation in female fitness male steriles will disappear from a population due to their reproductive disadvantage. In the present study I investigated whether male-sterile (MS), partially male-sterile (IN), and hermaphroditic (H) plants of Plantago lanceolata differed in reproductive growth and allocation.
View Article and Find Full Text PDFThis study describes the O2 uptake characteristics of intact roots of Brachypodium pinnatum. In the presence of 25 mM salicylhydroxamic acid (SHAM), concentrations of KCN below 3.5 νM had no effect on the rate of root respiration, whereas in the absence of 25 mM SHAM a significant inhibition of approx.
View Article and Find Full Text PDFA vasopressin and oxytocin containing nucleus is described for the first time in the pig hypothalamus. It is located near the third ventricle, just dorsal to the suprachiasmatic nucleus, and consists of magnocellular neurons, similar to those of the supraoptic nucleus and paraventricular nucleus. Morphometric analysis of neuronal number, size, density, and volume was performed at four different ages: 1 day, 7 weeks, 16 weeks, and 30 weeks postnatally.
View Article and Find Full Text PDFProlactin (PRL) was determined in plasma of fetal pigs from 40 days post coitum (d.p.c.
View Article and Find Full Text PDFJ Neurosci Methods
September 1986
Use of rabbit peroxidase-antiperoxidase (PAP) complex in immunostaining of the pig hypothalamus resulted in false positive staining of elements of the supraoptic and paraventricular nuclei due to binding of rabbit PAP complex and rabbit immunoglobulins to these structures. This phenomenon seriously hampers immunohistochemical investigation of the pig hypothalamus. Specific binding of swine immune serum against luteinizing hormone-releasing hormone has been detected with the protein A-biotin-streptavidin method employed on paraffin and vibratome sections of fetal and postnatal pig hypothalamus.
View Article and Find Full Text PDFPituitary gonadotropic development in fetal pigs has been studied immunocytochemically. From 50 days postcoitum (p.c.
View Article and Find Full Text PDF