Publications by authors named "Pooser R"

Distributed quantum metrology has drawn intense interest as it outperforms the optimal classical counterparts in estimating multiple distributed parameters. However, most schemes so far have required entangled resources consisting of photon numbers equal to or more than the parameter numbers, which is a fairly demanding requirement as the number of nodes increases. Here, we present a distributed quantum sensing scenario in which quantum-enhanced sensitivity can be achieved with fewer photons than the number of parameters.

View Article and Find Full Text PDF

We correct typographical errors in Eq. (15) in [Opt. Express30, 15184 (2022)10.

View Article and Find Full Text PDF

Continuous-variable (CV) photonic states are of increasing interest in quantum information science, bolstered by features such as deterministic resource state generation and error correction via bosonic codes. Data-efficient characterization methods will prove critical in the fine-tuning and maturation of such CV quantum technology. Although Bayesian inference offers appealing properties-including uncertainty quantification and optimality in mean-squared error-Bayesian methods have yet to be demonstrated for the tomography of arbitrary CV states.

View Article and Find Full Text PDF

The extraordinary sensitivity of plasmonic sensors is well-known in the optics and photonics community. These sensors exploit simultaneously the enhancement and the localization of electromagnetic fields close to the interface between a metal and a dielectric. This enables, for example, the design of integrated biochemical sensors at scales far below the diffraction limit.

View Article and Find Full Text PDF

We report demonstrations of both quadrature-squeezed vacuum and photon number difference squeezing generated in an integrated nanophotonic device. Squeezed light is generated via strongly driven spontaneous four-wave mixing below threshold in silicon nitride microring resonators. The generated light is characterized with both homodyne detection and direct measurements of photon statistics using photon number-resolving transition-edge sensors.

View Article and Find Full Text PDF

Nonlinear interferometers that replace beam splitters in Mach-Zehnder interferometers with nonlinear amplifiers for quantum-enhanced phase measurements have drawn increasing interest in recent years, but practical quantum sensors based on nonlinear interferometry remain an outstanding challenge. Here, we demonstrate the first practical application of nonlinear interferometry by measuring the displacement of an atomic force microscope microcantilever with quantum noise reduction of up to 3 dB below the standard quantum limit, corresponding to a quantum-enhanced measurement of beam displacement of 1.7  fm/sqrt[Hz].

View Article and Find Full Text PDF

We report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent.

View Article and Find Full Text PDF

Machine learning is a fascinating and exciting field within computer science. Recently, this excitement has been transferred to the quantum information realm. Currently, all proposals for the quantum version of machine learning utilize the finite-dimensional substrate of discrete variables.

View Article and Find Full Text PDF

Interferometers measure a wide variety of dynamic processes by converting a phase change into an intensity change. Nonlinear interferometers, making use of nonlinear media in lieu of beamsplitters, promise substantial improvement in the quest to reach the ultimate sensitivity limits. Here we demonstrate a new nonlinear interferometer utilizing a single parametric amplifier for mode mixing-conceptually, a nonlinear version of the conventional Michelson interferometer with its arms collapsed together.

View Article and Find Full Text PDF

Here we report that ternary metal oxides of type (Me)2O3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.

View Article and Find Full Text PDF

We demonstrate compact and accessible squeezed-light magnetometry using four-wave mixing in a single hot rubidium vapor cell. The strong intrinsic coherence of the four-wave mixing process results in nonlinear magneto-optical rotation (NMOR) on each mode of a two-mode relative-intensity squeezed state. This framework enables 4.

View Article and Find Full Text PDF

We demonstrate the transduction of macroscopic quantum correlations by Ag localized surface plasmons (LSPs). Quantum noise reduction, or squeezed light, generated through four-wave mixing in Rb vapor, is coupled to a Ag nanohole array designed to exhibit LSP-mediated extraordinary-optical transmission spectrally coincident with the squeezed light source at 795 nm. This first demonstration of the coupling of quantum light into LSPs conserves spatially dependent quantum information, allowing for parallel quantum protocols in on-chip subwavelength quantum information processing.

View Article and Find Full Text PDF

We present a workbench for the study of real-time quantum imaging by measuring the frame-by-frame quantum noise reduction of multi-spatial-mode twin beams generated by four wave mixing in Rb vapor. Exploiting the multiple spatial modes of this squeezed light source, we utilize spatial light modulators to selectively pass macropixels of quantum correlated modes from each of the twin beams to a high quantum efficiency balanced detector. In low-light-level imaging applications, the ability to measure the quantum correlations between individual spatial modes and macropixels of spatial modes with a single pixel camera will facilitate compressive quantum imaging with sensitivity below the photon shot noise limit.

View Article and Find Full Text PDF

Using a nondegenerate four-wave mixing process in hot rubidium vapor, we demonstrate a compact diode-laser-pumped system for the generation of intensity-difference squeezing down to 8 kHz with a maximum squeezing of -7 dB. To the best of our knowledge, this is the first demonstration of kilohertz-level intensity-difference squeezing using a semiconductor laser as the pump source. This scheme is of interest for experiments involving atomic ensembles, quantum communications, and precision measurements.

View Article and Find Full Text PDF

We experimentally demonstrate the creation of two correlated beams generated by a nondegenerate four-wave-mixing amplifier at λ=795 nm in hot rubidium vapor. We achieve intensity difference squeezing at frequencies as low as 1.5 kHz which is so far the lowest frequency to observe squeezing in an atomic system.

View Article and Find Full Text PDF

We present experimental results showing that quantum correlated light can be produced using non-degenerate, off-resonant, four-wave mixing (4WM) on both the D1 (795 nm) and D2 (780 nm) lines of (85)Rb and (87)Rb, extending earlier work on the D1 line of (85)Rb. Using this 4WM process in a hot vapor cell to produce bright twin beams, we characterize the degree of intensity-difference noise reduction below the standard quantum limit for each of the four systems. Although each system approximates a double-lambda configuration, differences in details of the actual level structure lead to varying degrees of noise reduction.

View Article and Find Full Text PDF

We present an experimental realization of a low-noise, phase-insensitive optical amplifier using a four-wave mixing interaction in hot Rb vapor. Performance near the quantum limit for a range of amplifier gains, including near unity, can be achieved. Such low-noise amplifiers are essential for so-called quantum cloning machines and are useful in quantum information protocols.

View Article and Find Full Text PDF

The entanglement properties of two beams of light can reside in subtle correlations that exist in the unavoidable quantum fluctuations of their amplitudes and phases. Recent advances in the generation of nonclassical light with four-wave mixing in an atomic vapor have permitted the production and the observation of entanglement that is localized in almost arbitrary transverse regions of a pair of beams. These multi-spatial-mode entangled beams may prove useful for an array of applications ranging from noise-free imaging and improved position sensing to quantum information processing.

View Article and Find Full Text PDF

Entangled systems display correlations that are stronger than can be obtained classically. This makes entanglement an essential resource for a number of applications, such as quantum information processing, quantum computing and quantum communications. The ability to control the transfer of entanglement between different locations will play a key role in these quantum protocols and enable quantum networks.

View Article and Find Full Text PDF

We generate intensity-difference-squeezed Laguerre-Gauss twin beams of light carrying orbital angular momentum by using four-wave mixing in a hot atomic vapor. The conservation of orbital angular momentum in the four-wave mixing process is studied as well as the spatial distribution of the quantum correlations obtained with different configurations of orbital angular momentum. Intensity-difference squeezing of up to -6.

View Article and Find Full Text PDF

Two beams of light can be quantum mechanically entangled through correlations of their phase and intensity fluctuations. For a pair of spatially extended image-carrying light fields, the concept of entanglement can be applied not only to the entire images but also to their smaller details. We used a spatially multimode amplifier based on four-wave mixing in a hot vapor to produce twin images that exhibit localized entanglement.

View Article and Find Full Text PDF

We report the simultaneous quasi-phase-matching of all three possible nonlinearities for propagation along the X axis of periodically poled (PP) KTiOPO4 (KTP) for second-harmonic generation of 745 nm pulsed light from 1490 nm subpicosecond pulses in a PPKTP crystal with a 45.65 microm poling period. This confirms the recent Sellmeier fits for KTP by Kato and Takaoka [Appl.

View Article and Find Full Text PDF