In this work, we investigate plasmonic enhancement in poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester organic photovoltaics (OPVs) by integrating shape- and size-controlled bimetallic gold core-silver shell nanocrystals (Au-Ag NCs) into the poly(3,4-ethylenedioxythiophene):polystyrene sulfonate hole-transport layer. We observed that the best-performing Au-Ag NC-incorporated OPVs improved the power conversion efficiency by 9% via a broadband increase in photocurrent throughout the visible spectrum. Our experimental and computational results suggest that the observed photocurrent enhancement in plasmonic OPVs originates from both enhanced absorption and improved exciton dissociation and charge collection.
View Article and Find Full Text PDFIn this work, we employed wet chemically synthesized bimetallic Au-Ag core-shell nanostructures (Au-AgNSs) to enhance the photocurrent density of mesoporous TiO2 for water splitting and we compared the results with monometallic Au nanoparticles (AuNPs). While Au-AgNSs incorporated photoanodes give rise to 14× enhancement in incident photon to charge carrier efficiency, AuNPs embedded photoanodes result in 6× enhancement. By varying nanoparticle concentration in the photoanodes, we observed ∼245× less Au-AgNSs are required relative to AuNPs to generate similar photocurrent enhancement for solar fuel conversion.
View Article and Find Full Text PDF