Tuberculosis (TB), derived from bacterium named , has become one of the worst infectious and contagious illnesses in the world after HIV/AIDS. Long-term therapy, a high pill burden, lack of compliance, and strict management regimens are disadvantages which resulted in the extensively drug-resistant (XDR) along with multidrug-resistant (MDR) in the treatment of TB. One of the main thrust areas for the current scenario is the development of innovative intervention tools for early diagnosis and therapeutics towards (MTB).
View Article and Find Full Text PDFPolysaccharide-based magnetic nanocomposites can eminently illuminate several attractive features as anticancer drug carriers. In this study, rice straw-based cellulose nanowhisker (CNW) was used as solid support for FeO nanofillers to synthesize magnetic CNW. Then, cross-linked chitosan-coated magnetic CNW for 5-fluorouracil carrier abbreviated as CH/MCNW/5FU.
View Article and Find Full Text PDFCellulose and chitosan with remarkable biocompatibility and sophisticated physiochemical characteristics can be a new dawn to the advanced drug nano-carriers in cancer treatment. This study aims to synthesize layer-by-layer bionanocomposites from chitosan and rice straw cellulose encapsulated 5-Fluorouracil (CS-CF/5FU BNCs) using the ionic gelation method and the sodium tripolyphosphate (TPP) cross-linker. Data from X-ray and Fourier-transform infrared spectroscopy showed successful preparation of CS-CF/5FU BNCs.
View Article and Find Full Text PDF