Traditional Li-ion intercalation chemistry into graphite anodes exclusively utilizes the cointercalation-free or cointercalation mechanism. The latter mechanism is based on ternary graphite intercalation compounds (t-GICs), where glyme solvents were explored and proved to deliver unsatisfactory cyclability in LIBs. Herein, we report a novel intercalation mechanism, that is, in situ synthesis of t-GIC in the tetrahydrofuran (THF) electrolyte via a spontaneous, controllable reaction between binary-GIC (b-GIC) and free THF molecules during initial graphite lithiation.
View Article and Find Full Text PDFSolid-electrolyte interphases (SEIs) in advanced rechargeable batteries ensure reversible electrode reactions at extreme potentials beyond the thermodynamic stability limits of electrolytes by insulating electrons while allowing the transport of working ions. Such selective ion transport occurs naturally in biological cell membranes as a ubiquitous prerequisite of many life processes and a foundation of biodiversity. In addition, cell membranes can selectively open and close the ion channels in response to external stimuli (e.
View Article and Find Full Text PDF