Publications by authors named "Poojitha Pinjala"

Parkinson's disease (PD) is a multifactorial neurodegenerative disorder whose cause is unclear. Neuroinflammation is recognized as one of the major pathogenic mechanisms involved in the development and progression of PD. NLRP3 inflammasome is the most widely studied inflammatory mediator in various diseases including PD.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is a progressive neurodegenerative disorder linked to the loss of dopaminergic neurons in the substantia nigra. Mitophagy, mitochondrial selective autophagy, is critical in maintaining mitochondrial and subsequently neuronal homeostasis. Its impairment is strongly implicated in PD and is associated with accelerated neurodegeneration.

View Article and Find Full Text PDF

Mounting evidence suggests a role for oxidative stress and accumulation of dysfunctional organelle and misfolded proteins in PD. Autophagosomes mediate the clearance of these cytoplasmic proteins via delivery to lysosomes to form autophagolysosomes, followed by degradation of the protein by lysosomal enzymes. In PD, autophagolysosome accumulation occurs initiating a plethora of events resulting in neuronal death by apoptosis.

View Article and Find Full Text PDF

Since its discovery in 2012, CRISPR Cas9 has been tried as a direct treatment approach to correct the causative gene mutation and establish animal models in neurodegenerative disorders. Since no strategy developed until now could completely cure Parkinson's disease (PD), neuroscientists aspire to use gene editing technology, especially CRISPR/Cas9, to induce a permanent correction in genetic PD patients expressing mutated genes. Over the years, our understanding of stem cell biology has improved.

View Article and Find Full Text PDF

The prevalence of Parkinson's disease (PD) continues to increase despite substantial research. Mounting evidence states that dysfunctional mitochondrial bioenergetics play a vital role in PD etiology. A disturbance in the electron transport chain, more precisely, disruption of the mitochondrial complex I (MCI), is the most detrimental factor.

View Article and Find Full Text PDF