Publications by authors named "Pooja Jamdagni"

The highly efficient photocatalytic water splitting process to produce clean energy requires novel semiconductor materials to achieve a high solar-to-hydrogen energy conversion efficiency. Herein, the photocatalytic properties of anisotropic β-PtX (X = S, Se) and Janus β-PtSSe monolayers were investigated based on the density functional theory. The small cleavage energy for β-PtS (0.

View Article and Find Full Text PDF

By employing the state-of-the-art density functional theory method, we demonstrate that Janus WSeTe monolayer exhibits promising photocatalytic properties for solar water splitting. The results show that the monolayer possesses thermodynamic stability, suitable bandgap (∼1.89 eV), low excitons binding energy (∼0.

View Article and Find Full Text PDF

The successful experimental fabrication of 2D tellurium (Te) has resulted in growing interest in the monolayers of group VI elements. By employing density functional theory, we have explored the stability and electronic and mechanical properties of 1T-MoS-like chalcogen (α-Se and α-Te) monolayers. Phonon spectra are free from imaginary modes suggesting these monolayers to be dynamically stable.

View Article and Find Full Text PDF

Considering the rapid development of experimental techniques for fabricating 2D materials in recent years, various monolayers are expected to be experimentally realized in the near future. Motivated by the recent research activities focused on the honeycomb arsenene monolayers, the stability and carrier mobility of non-honeycomb and porous allotropic arsenene are determined using first principles calculations. In addition to five honeycomb structures of arsenene, a total of eight other structures are considered in this study.

View Article and Find Full Text PDF

Topological defects in ultrathin layers are often formed during synthesis and processing, thereby strongly influencing the electronic properties of layered systems. For the monolayers of Sn and group-V elements, we report the results based on density functional theory determining the role of Stone-Wales (SW) defects in modifying their electronic properties. The calculated results find the electronic properties of the Sn monolayer to be strongly dependent on the concentration of SW defects, e.

View Article and Find Full Text PDF