Publications by authors named "Pooja Hegde"

Predictions of drug-drug interactions resulting from time-dependent inhibition (TDI) of CYP3A4 have consistently overestimated or mis-predicted (i.e. false positives) the interaction that is observed in vivo.

View Article and Find Full Text PDF

Pyrazinamide (PZA) is a cornerstone of first-line antitubercular drug therapy and is unique in its ability to kill nongrowing populations of through disruption of coenzyme A synthesis. Unlike other drugs, PZA action is conditional and requires potentiation by host-relevant environmental stressors, such as low pH and nutrient limitation. Despite its pivotal role in tuberculosis therapy, the mechanistic basis for PZA potentiation remains unknown and the durability of this crucial drug is challenged by the emergent spread of drug resistance.

View Article and Find Full Text PDF

The role of transporters in drug clearance is widely acknowledged, directly and indirectly by facilitating tissue/enzyme exposure. Through the latter, transporters also affect volume of distribution. Drug-drug interactions (DDIs) involving organic anion transporting polypeptides (OATPs) 1B1/1B3 and pharmacogenetics lead to altered pharmacokinetics of OATP1B substrates; however, several factors may confound direct interpretation of pharmacokinetic parameters from these clinical studies using noncompartmental analysis (NCA).

View Article and Find Full Text PDF

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) is a leading cause of infectious disease mortality. The salicylic acid derived small molecule siderophores known as mycobactins are essential in vivo for iron acquisition of Mtb where iron is restricted in the host. Herein, we synthesize and explore the mechanism of action of polyfluorinated salicylic acid derivates, which were previously reported to possess potent antimycobacterial activity.

View Article and Find Full Text PDF

The electron transport chain (ETC) in the cell membrane consists of a series of redox complexes that transfer electrons from electron donors to acceptors and couples this electron transfer with the transfer of protons (H) across a membrane. This process generates proton motive force which is used to produce ATP and a myriad of other functions and is essential for the long-term survival of Mycobacterium tuberculosis (Mtb), the causative organism of tuberculosis (TB), under the hypoxic conditions present within infected granulomas. Menaquinone (MK), an important carrier molecule within the mycobacterial ETC, is synthesized de novo by a cluster of enzymes known as the classic/canonical MK biosynthetic pathway.

View Article and Find Full Text PDF

Tuberculosis (TB), caused by (), is one of the leading causes of death in developing countries. Non-tuberculous mycobacteria (NTM) infections are rising and prey upon patients with structural lung diseases such as chronic obstructive pulmonary disease (COPD) and cystic fibrosis. All mycobacterial infections require lengthy treatment regimens with undesirable side effects.

View Article and Find Full Text PDF

The human microbiome represents a large and diverse collection of microbes that plays an integral role in human physiology and pathophysiology through interactions with the host and within the microbial community. While early work exploring links between microbiome signatures and diseases states has been associative, emerging evidence demonstrates the metabolic products of the human microbiome have more proximal causal effects on disease phenotypes. The therapeutic implications of this shift are profound as manipulation of the microbiome by the administration of live biotherapeutics, ongoing, can now be pursued alongside research efforts toward describing inhibitors of key microbiome enzymes involved in the biosynthesis of metabolites implicated in various disease states and processing of host-derived metabolites.

View Article and Find Full Text PDF

Tuberculosis (TB) remains a leading cause of infectious disease-related mortality and morbidity. Pyrazinamide (PZA) is a critical component of the first-line TB treatment regimen because of its sterilizing activity against non-replicating Mycobacterium tuberculosis (Mtb), but its mechanism of action has remained enigmatic. PZA is a prodrug converted by pyrazinamidase encoded by pncA within Mtb to the active moiety, pyrazinoic acid (POA) and PZA resistance is caused by loss-of-function mutations to pyrazinamidase.

View Article and Find Full Text PDF

While biochemical, structural, and computational studies have shown the importance of remdesivir's C1'-substituent in its perturbation of SARS-CoV-2 RdRp action, we recognized the paucity of methods to stereoselectively install substituents at this position as an obstacle to rigorous explorations of SAR and mechanism. We report the utilization of an anomerically pure 1'-cyano intermediate as an entry point to a chemically diverse set of substitutions, allowing for 1'diversification while obviating the need for the tedious separation of anomeric mixtures.

View Article and Find Full Text PDF

Rifamycin antibiotics are a valuable class of antimicrobials for treating infections by mycobacteria and other persistent bacteria owing to their potent bactericidal activity against replicating and non-replicating pathogens. However, the clinical utility of rifamycins against Mycobacterium abscessus is seriously compromised by a novel resistance mechanism, namely, rifamycin inactivation by ADP-ribosylation. Using a structure-based approach, we rationally redesign rifamycins through strategic modification of the ansa-chain to block ADP-ribosylation while preserving on-target activity.

View Article and Find Full Text PDF

Nosocomial infections caused by resistant Gram-positive organisms are on the rise, presumably due to a combination of factors including prolonged hospital exposure, increased use of invasive procedures, and pervasive antibiotic therapy. Although antibiotic stewardship and infection control measures are helpful, newer agents against multidrug-resistant (MDR) Gram-positive bacteria are urgently needed. Here, we describe our efforts that led to the identification of 5-amino-4-quinolone with exceptionally potent Gram-positive activity with minimum inhibitory concentrations (MICs) ≤0.

View Article and Find Full Text PDF

The discovery of β-lactam (BL) antibiotics in the early 20th century represented a remarkable advancement in human medicine, allowing for the widespread treatment of infectious diseases that had plagued humanity throughout history. Yet, this triumph was followed closely by the emergence of β-lactamase (BLase), a bacterial weapon to destroy BLs. BLase production is a primary mechanism of resistance to BL antibiotics, and the spread of new homologues with expanded hydrolytic activity represents a pressing threat to global health.

View Article and Find Full Text PDF

Transporters belonging to the Resistance-Nodulation-cell Division (RND) superfamily of proteins such as MmpL3 and its analogs are the focus of intense investigations due to their importance in the physiology of species and antimycobacterial drug discovery. These transporters deliver trehalose monomycolates, the precursors of major lipids of the outer membrane, to the periplasm by a proton motive force-dependent mechanism. In this study, we successfully purified, from native membranes, the full-length and the C-terminal truncated MmpL3 and CmpL1 proteins and reconstituted them into proteoliposomes.

View Article and Find Full Text PDF

() aspartate decarboxylase PanD is required for biosynthesis of the essential cofactor coenzyme A and targeted by the first line drug pyrazinamide (PZA). PZA is a prodrug that is converted by a bacterial amidase into its bioactive form pyrazinoic acid (POA). Employing structure-function analyses we previously identified POA-based inhibitors of PanD showing much improved inhibitory activity against the enzyme.

View Article and Find Full Text PDF

Tuberculosis (TB) is one of the world's most deadly infectious diseases resulting in nearly 1.3 million deaths annually and infecting nearly one-quarter of the population. para-Aminosalicylic acid (PAS), an important second-line agent for treating drug-resistant Mycobacterium tuberculosis, has moderate bioavailability and rapid clearance that necessitate high daily doses of up to 12 g per day, which in turn causes severe gastrointestinal disturbances presumably by disruption of gut microbiota and host epithelial cells.

View Article and Find Full Text PDF

Modified -nucleosides have proven to be enormously successful as chemical probes to understand fundamental biological processes and as small-molecule drugs for cancer and infectious diseases. Historically, the modification of the glycosyl unit has focused on the 2'-, 3'-, and 4'-positions as well as the ribofuranosyl ring oxygen. By contrast, the 1'-position has rarely been studied due to the labile nature of the anomeric position.

View Article and Find Full Text PDF

Isoniazid (INH) remains a cornerstone for treatment of drug susceptible tuberculosis (TB), yet the quantitative structure-activity relationships for INH are not well documented in the literature. In this paper, we have evaluated a systematic series of INH analogs against contemporary Mycobacterium tuberculosis strains from different lineages and a few non-tuberculous mycobacteria (NTM). Deletion of the pyridyl nitrogen atom, isomerization of the pyridine nitrogen to other positions, replacement of the pyridine ring with isosteric heterocycles, and modification of the hydrazide moiety of INH abolishes antitubercular activity.

View Article and Find Full Text PDF

A common strategy employed in antibacterial drug discovery is the targeting of biosynthetic processes that are essential and specific for the pathogen. Specificity in particular avoids undesirable interactions with potential enzymatic counterparts in the human host, and it ensures on-target toxicity. Synthesis of pantothenate (Vitamine B5), which is a precursor of the acyl carrier coenzyme A, is an example of such a pathway.

View Article and Find Full Text PDF

8-Nitrobenzothiazinones (BTZs) exemplified by macozinone are a new class of antitubercular agents with exceptionally potent activity. The aryl nitro group has been considered indispensable for activity since this is bioactivated within mycobacteria by the flavoenzyme DprE1 to a reactive nitroso metabolite that covalently labels Cys387. However, the aryl nitro group is a potential liability with regards to safety, stability, and resistance.

View Article and Find Full Text PDF
Article Synopsis
  • Nontuberculous mycobacteria (NTM) primarily affect patients with existing lung issues, and new compounds called indole-2-carboxamides (ICs) have shown effectiveness against these pathogens.
  • Two specific lead molecules, referred to as compounds 5 and 25, were tested in mouse models infected with NTM.
  • When administered orally, these lead molecules significantly reduced the bacterial levels in the lungs and spleens of the infected mice.
View Article and Find Full Text PDF

Nontuberculous mycobacterial (NTM) pulmonary infections are emerging as a global health problem and pose a threat to susceptible individuals with structural or functional lung conditions such as cystic fibrosis, chronic obstructive pulmonary disease and bronchiectasis. complex (MAC) and complex (MABSC) species account for 70-95% of the pulmonary NTM infections worldwide. Treatment options for these pathogens are limited, involve lengthy multidrug regimens of 12-18 months with parenteral and oral drugs, and their outcome is often suboptimal.

View Article and Find Full Text PDF