Publications by authors named "Pooja Bhatnagar-Mathur"

A comprehensive understanding of the nucleocytoplasmic interactions that occur between genes related to the restoration of fertility and cytoplasmic male sterility (CMS) provides insight into the development of hybrids of important crop species. Modern biotechnological techniques allow this to be achieved in an efficient and quick manner. Heterosis is paramount for increasing the yield and quality of a crop.

View Article and Find Full Text PDF
Article Synopsis
  • The Osckx2 mutant in indica rice shows increased levels of cytokinins, leading to better panicle branching, higher grain yield, and improved drought tolerance.
  • Using CRISPR/Cas9 gene editing, researchers knocked out the OsCKX2 gene, which normally inactivates cytokinins, resulting in enhanced plant growth and water-saving traits under drought conditions.
  • The study highlights the potential for using the Osckx2 allele in breeding programs to create climate-resilient rice varieties that can boost food security in challenging environments.
View Article and Find Full Text PDF

Aflatoxins are immunosuppressive and carcinogenic secondary metabolites, produced by the filamentous ascomycete , that are hazardous to animal and human health. In this study, we show that multiplexed host-induced gene silencing (HIGS) of genes essential for fungal sporulation and aflatoxin production (, , , and confers enhanced resistance to infection and aflatoxin contamination in groundnut (<20 ppb). Comparative proteomic analysis of contrasting groundnut genotypes (WT and near-isogenic HIGS lines) supported a better understanding of the molecular processes underlying the induced resistance and identified several groundnut metabolites that might play a significant role in resistance to infection and aflatoxin contamination.

View Article and Find Full Text PDF

Orf147, a cytotoxic peptide, has been found to cause cytoplasmic male sterility (CMS) in Cajanus cajanifolius (pigeonpea). In our study, Orf147 was introduced into self-pollinating Cicer arietinum (chickpea) using Agrobacterium-mediated transformation for induction of CMS. The stable integration and expression of the transgene has been assessed through PCR and qRT-PCR analysis.

View Article and Find Full Text PDF

Advances in biocontrol potentials and fungicide resistance are highly desirable for Trichoderma. Thus, it is profitable to use mutagenic agents to develop superior strains with enhanced biocontrol properties and fungicide tolerance in Trichoderma. This study investigates the N-methyl-n-nitro-N-nitrosoguanidine (NTG) (100 mg/L) induced mutants of Trichoderma asperellum.

View Article and Find Full Text PDF
Article Synopsis
  • Advanced breeding tools, particularly CRISPR/Cas and other precise gene-editing techniques, are essential for improving crop traits and addressing future food system challenges, especially in dryland agriculture.
  • By enabling targeted improvements in crops like millets, quinoa, and cassava, these technologies aim to enhance stress tolerance, nutritional value, and yields, which are crucial for food security in vulnerable regions.
  • The text also highlights the importance of appropriate regulatory environments to ensure that genome-edited plants can evolve and progress without unreasonable barriers, allowing for the development of locally preferred crop varieties.
View Article and Find Full Text PDF

Pearl millet is an important cereal crop of semi-arid regions since it is highly nutritious and climate resilient. However, pearl millet is underutilized commercially due to the rapid onset of hydrolytic rancidity of seed lipids post-milling. We investigated the underlying biochemical and molecular mechanisms of rancidity development in the flour from contrasting inbred lines under accelerated aging conditions.

View Article and Find Full Text PDF

Pearl millet [ (L) R. Br.] is an important cereal crop of the semiarid tropics, which can withstand prolonged drought and heat stress.

View Article and Find Full Text PDF

Late embryogenesis abundant (LEA) genes display distinct functions in response to abiotic stresses in plants. In pearl millet (Pennisetum glaucum L.), a total of 21 PgLEA genes were identified and classified into six groups including LEA1, LEA2, LEA3, LEA5, LEA7, and dehydrins (DHN).

View Article and Find Full Text PDF

For millennia, natural and artificial selection has combined favourable alleles for desirable traits in crop species. While modern plant breeding has achieved steady increases in crop yields over the last century, on the current trajectory we will simply not meet demand by 2045. Novel breeding strategies and sources of genetic variation will be required to sustainably fill predicted yield gaps and meet new consumer preferences.

View Article and Find Full Text PDF

Genetically engineered plants have varied applications in agriculture for enhancing the values of food and feed. Genetic engineering aims to introduce selected genetic regions with desirable traits into target plants for both spatial and temporal expressions. Promoters are the key elements responsible for regulating gene expressions by modulating the transcription factors (TFs) through recognition of RNA polymerases.

View Article and Find Full Text PDF

In the present study, the promoter region of the pearl millet heat shock protein 10 (PgHsp10) gene was cloned and characterized. The PgHsp10 promoter (PgHsp10pro) sequence region has all the cis-motifs required for tissue and abiotic stress inducibility. The complete PgHsp10pro (PgHsp10PC) region and a series of 5' truncations of PgHsp10 (PgHsp10D1 and PgHsp10D2) and an antisense form of PgHsp10pro (PgHsp10AS) were cloned into a plant expression vector (pMDC164) through gateway cloning.

View Article and Find Full Text PDF

Groundnut is an important global food and oil crop that underpins agriculture-dependent livelihood strategies meeting food, nutrition, and income security. Aflatoxins, pose a major challenge to increased competitiveness of groundnut limiting access to lucrative markets and affecting populations that consume it. Other drivers of low competitiveness include allergens and limited shelf life occasioned by low oleic acid profile in the oil.

View Article and Find Full Text PDF

Pearl millet is a C cereal crop that grows in arid and semi-arid climatic conditions with the remarkable abiotic stress tolerance. It contributed to the understanding of stress tolerance not only at the physiological level but also at the genetic level. In the present study, we functionally cloned and characterized three abiotic stress-inducible promoters namely cytoplasmic Apx1 (Ascorbate peroxidase), Dhn (Dehydrin), and Hsc70 (Heat shock cognate) from pearl millet.

View Article and Find Full Text PDF

Finger millet (Eleusine coracana L.) is an annual herbaceous self-pollinating C4 cereal crop of the arid and semi-arid regions of the world. Finger millet is a food security crop proven to have resilience to changing climate and scores very high in nutrition.

View Article and Find Full Text PDF

A novel open reading frame (ORF) identified and cloned from the A4 cytoplasm of Cajanus cajanifolius induced partial to complete male sterility when introduced into Arabidopsis and tobacco. Pigeonpea (Cajanus cajan L. Millsp.

View Article and Find Full Text PDF

The molecular mechanisms and targets of nitric oxide (NO) are not fully known in plants. Our study reports the first large-scale quantitative proteomic analysis of NO donor responsive proteins in chickpea. Dose response studies carried out using NO donors, sodium nitroprusside (SNP), diethylamine NONOate (DETA) and S-nitrosoglutathione (GSNO) in chickpea genotype ICCV1882, revealed a dose dependent positive impact on seed germination and seedling growth.

View Article and Find Full Text PDF

Aflatoxin contamination in peanuts poses major challenges for vulnerable populations of sub-Saharan Africa and South Asia. Developing peanut varieties to combat preharvest Aspergillus flavus infection and resulting aflatoxin contamination has thus far remained a major challenge, confounded by highly complex peanut-Aspergilli pathosystem. Our study reports achieving a high level of resistance in peanut by overexpressing (OE) antifungal plant defensins MsDef1 and MtDef4.

View Article and Find Full Text PDF

High temperature is one of the biggest abiotic stress challenges for agriculture. While, Nitric oxide (NO) is gaining increasing attention from plant science community due to its involvement in resistance to various plant stress conditions, its implications on heat stress tolerance is still unclear. Several lines of evidence indicate NO as a key signaling molecule in mediating various plant responses such as photosynthesis, oxidative defense, osmolyte accumulation, gene expression, and protein modifications under heat stress.

View Article and Find Full Text PDF

Accurate and reliable gene expression data from qPCR depends on stable reference gene expression for potential gene functional analyses. In this study, 15 reference genes were selected and analyzed in various sample sets including abiotic stress treatments (salt, cold, water stress, heat, and abscisic acid) and tissues (leaves, roots, seedlings, panicle, and mature seeds). Statistical tools, including geNorm, NormFinder and RefFinder, were utilized to assess the suitability of reference genes based on their stability rankings for various sample groups.

View Article and Find Full Text PDF

Quantitative Real-Time PCR (qPCR) is a preferred and reliable method for accurate quantification of gene expression to understand precise gene functions. A total of 25 candidate reference genes including traditional and new generation reference genes were selected and evaluated in a diverse set of chickpea samples. The samples used in this study included nine chickpea genotypes (Cicer spp.

View Article and Find Full Text PDF

Sorghum is a typical short-day (SD) plant and its use in grain or biomass production in temperate regions depends on its flowering time control, but the underlying molecular mechanism of floral transition in sorghum is poorly understood. Here we characterized sorghum FLOWERING LOCUS T (SbFT) genes to establish a molecular road map for mechanistic understanding. Out of 19 PEBP genes, SbFT1, SbFT8 and SbFT10 were identified as potential candidates for encoding florigens using multiple approaches.

View Article and Find Full Text PDF

Nitric oxide (NO) is a versatile gaseous signaling molecule with increasing significance in plant research due to its association with various stress responses. Although, improved drought tolerance by NO is associated greatly with its ability to reduce stomatal opening and oxidative stress, it can immensely influence other physiological processes such as photosynthesis, proline accumulation and seed germination under water deficit. NO as a free radical can directly alter proteins, enzyme activities, gene transcription, and post-translational modifications that benefit functional recovery from drought.

View Article and Find Full Text PDF

Aflatoxins are toxic, carcinogenic, mutagenic, teratogenic and immunosuppressive byproducts of Aspergillus spp. that contaminate a wide range of crops such as maize, peanut, and cotton. Aflatoxin not only affects crop production but renders the produce unfit for consumption and harmful to human and livestock health, with stringent threshold limits of acceptability.

View Article and Find Full Text PDF