Cellular morphology, shaped by various genetic and environmental influences, is pivotal to studying experimental cell biology, necessitating precise measurement and analysis techniques. Traditional approaches, which rely on geometric metrics derived from stained images, encounter obstacles stemming from both the imaging and analytical domains. Staining processes can disrupt the cell's natural state and diminish accuracy due to photobleaching, while conventional analysis techniques, which categorize cells based on shape to discern pathophysiological conditions, often fail to capture the continuous and asynchronous nature of biological processes such as cell differentiation, immune responses, and cancer progression.
View Article and Find Full Text PDFWhite adipose tissue (WAT) and brown adipose tissue (BAT) are the primary types of fats in humans, and they play prominent roles in energy storage and thermogenesis, respectively. While the mechanisms of terminal adipogenesis are well understood, much remains unknown about the early stages of adipogenic differentiation. Label-free approaches, such as optical diffraction tomography (ODT) and Raman spectroscopy, offer the ability to retrieve morphological and molecular information at the single cell level without the negative effects of photobleaching and system perturbation due to introduction of fluorophores.
View Article and Find Full Text PDF