Compared to exploratory development of new structure types, pushing the limits of isoreticular synthesis on a high-performance MOF platform may have higher probability of achieving targeted properties. Multi-modular MOF platforms could offer even more opportunities by expanding the scope of isoreticular chemistry. However, navigating isoreticular chemistry towards best properties on a multi-modular platform is challenging due to multiple interconnected pathways.
View Article and Find Full Text PDFIsoreticular chemistry, which enables property optimization by changing compositions without changing topology, is a powerful synthetic strategy. One of the biggest challenges facing isoreticular chemistry is to extend it to ligands with strongly coordinating substituent groups such as unbound -COOH, because competitive interactions between such groups and metal ions can derail isoreticular chemistry. It is even more challenging to have an isoreticular series of carboxyl-functionalized MOFs capable of encompassing chemically disparate metal ions.
View Article and Find Full Text PDFControlling network growth and architecture of 3D-conjugated porous polymers (CPPs) is challenging and therefore has limited the ability to systematically tune the network architecture and study its impact on doping efficiency and conductivity. We have proposed that π-face masking straps mask the π-face of the polymer backbone and therefore help to control π-π interchain interactions in higher dimensional π-conjugated materials unlike the conventional linear alkyl pendant solubilizing chains that are incapable of masking the π-face. Herein, we used cycloaraliphane-based π-face masking strapped monomers and show that the strapped repeat units, unlike the conventional monomers, help to overcome the strong interchain π-π interactions, extend network residence time, tune network growth, and increase chemical doping and conductivity in 3D-conjugated porous polymers.
View Article and Find Full Text PDF