We developed self-quenching reporter molecules (SQRMs), oligodeoxynucleotides with fluorophore and quencher moieties at the 5' and 3' ends respectively, to probe mRNAs for single-stranded, hybridization accessible sequences. SQRMs and their homologous antecedents, Molecular Beacons (MB), are designed with the assumption that they adopt a stem-loop structure thought critical for regulating their reporter function. Recently, we observed that stem-loop structures are not required for SQRM function, and on this basis proposed that these reporter molecules be classified according to whether they were stemmed (Type I) or not (Type II).
View Article and Find Full Text PDFThe design of oligonucleotides for gene silencing requires a rational method for identifying hybridization-accessible sequences within the target RNA. To this end, we have developed stem-loop self-quenching reporter molecules (SQRMs) as probes for such sequence. SQRMs have a 5' fluorophore, a quenching moiety on the 3' end, an intervening sequence that forms an approximately 5-basepaired stem, and a loop sequence of approximately 20-30 bases.
View Article and Find Full Text PDFSynthetic DNA probes attached to microarrays usually range in length from 25 to 70 nucleotides. There is a compromise between short probes with lower sensitivity, which can be accurately synthesized in higher yields, and long probes with greater sensitivity but lower synthesis yields. Described here are microarrays printed with spots containing a mixture of two short probes, each designed to hybridize at noncontiguous sites in the same targeted sequence.
View Article and Find Full Text PDFWe describe a physical mRNA mapping strategy employing fluorescent self-quenching reporter molecules (SQRMs) that facilitates the identification of mRNA sequence accessible for hybridization with antisense nucleic acids in vitro and in vivo, real time. SQRMs are 20-30 base oligodeoxynucleotides with 5-6 bp complementary ends to which a 5' fluorophore and 3' quenching group are attached. Alone, the SQRM complementary ends form a stem that holds the fluorophore and quencher in contact.
View Article and Find Full Text PDFIncorporation of nucleosides with novel base-constraining oxetane (OXE) modifications [oxetane, 1-(1',3'-O-anhydro-beta-d-psicofuranosyl nucleosides)] into antisense (AS) oligodeoxyribonucleotides (ODNs) should greatly improve the gene silencing efficiency of these molecules. This is because OXE modified bases provide nuclease protection to the natural backbone ODNs, can impart T(m) values similar to those predicted for RNA-RNA hybrids, and not only permit but also accelerate RNase H mediated catalytic activity. We tested this assumption in living cells by directly comparing the ability of OXE and phosphorothioate (PS) ODNs to target c-myb gene expression.
View Article and Find Full Text PDFThe osmotic stress technique was used to measure changes in macromolecular hydration that accompany binding of wild-type Escherichia coli lactose (lac) repressor to its regulatory site (operator O1) in the lac promoter and its transfer from site O1 to nonspecific DNA. Binding at O1 is accompanied by the net release of 260 +/- 32 water molecules. If all are released from macromolecular surfaces, this result is consistent with a net reduction of solvent-accessible surface area of 2370 +/- 550 A.
View Article and Find Full Text PDFAn enzymatic solution to the problem of obtaining 13C/15N-labeled nucleotides that are deuterated uniquely at the H2' ' position within the ribose ring is presented. Selective deuteration occurs with an overall yield of >80%. The deuteron at the H2' ' position allows measurement of the scalar and residual dipolar couplings for the bond vectors attached to the C2' carbon of each ribose sugar.
View Article and Find Full Text PDFSolution NMR spectroscopy of nucleic acids has been limited by the short-range nature of the nuclear Overhauser effect and scalar coupling restraints normally used in structure determination. The addition of residual dipolar couplings, obtained from slightly oriented mixtures, provides bond vector angles relative to a universal alignment tensor. The accurate determination of helix curvature, domain orientation and the stoichiometry of homomultimeric nucleic acid complexes is now possible.
View Article and Find Full Text PDF