Background: Blood-based biomarkers, especially P-tau217, have been gaining interest as diagnostic tools to measure Alzheimer disease (AD) pathology.
Methods: We developed a plasma P-tau217 chemiluminescent immunoassay using 4G10E2 and IBA493 as antibodies, a synthetic tau peptide as calibrator, and the Quanterix SP-X imager. Analytical validation performed in a College of American Pathologists-accredited CLIA laboratory involved multiple kit lots, operators, timepoints, and imagers.
Introduction: Alzheimer's disease is partially characterized by the progressive accumulation of aggregated tau-containing neurofibrillary tangles. Although the association between accumulated tau, neurodegeneration, and cognitive decline is critical for disease understanding and clinical trial design, we still lack robust tools to predict individualized trajectories of tau accumulation. Our objective was to assess whether brain imaging biomarkers of flortaucipir-positron emission tomography (PET), in combination with clinical and genomic measures, could predict future pathological tau accumulation.
View Article and Find Full Text PDFFibrillar tau gradually progresses in the brain during the course of Alzheimer's disease (AD). However, the contribution of tau accumulation in a given brain region to decline in different cognitive domains and thus phenotypic heterogeneity in AD remains unclear. Here, we leveraged the functional connectome to link the locality of tau accumulation to domain-specific cognitive impairment.
View Article and Find Full Text PDFIntroduction: Tau-positron emission tomography (PET) outcome data of patients with Alzheimer's disease (AD) cannot currently be meaningfully compared or combined when different tracers are used due to differences in tracer properties, instrumentation, and methods of analysis.
Methods: Using head-to-head data from five cohorts with tau PET radiotracers designed to target tau deposition in AD, we tested a joint propagation model (JPM) to harmonize quantification (units termed "CenTauR" [CTR]). JPM is a statistical model that simultaneously models the relationships between head-to-head and anchor point data.
Background: Maximizing the efficiency to screen amyloid-positive individuals in asymptomatic and non-demented aged population using blood-based biomarkers is essential for future success of clinical trials in the early stage of Alzheimer's disease (AD). In this study, we elucidate the utility of combination of plasma amyloid-β (Aβ)-related biomarkers and tau phosphorylated at threonine 217 (p-tau217) to predict abnormal Aβ-positron emission tomography (PET) in the preclinical and prodromal AD.
Methods: We designed the cross-sectional study including two ethnically distinct cohorts, the Japanese trial-ready cohort for preclinica and prodromal AD (J-TRC) and the Swedish BioFINDER study.
Alzheimer's disease is defined by the presence of β-amyloid plaques and neurofibrillary tau tangles potentially preceding clinical symptoms by many years. Previously only detectable post-mortem, these pathological hallmarks are now identifiable using biomarkers, permitting an definitive diagnosis of Alzheimer's disease. F-flortaucipir (previously known as F-T807; F-AV-1451) was the first tau positron emission tomography tracer to be introduced and is the only Food and Drug Administration-approved tau positron emission tomography tracer (Tauvid™).
View Article and Find Full Text PDFAlzheimer's disease (AD) staging criteria lack standardized, empirical description. Well-defined AD staging criteria are an important consideration in protocol design, influencing a more standardized inclusion/exclusion criteria and defining what constitutes meaningful differentiation among the stages. However, many trials are being designed on the basis of biomarker features and the two need to be coordinated.
View Article and Find Full Text PDFObjective: We aimed to test whether region-specific factors, including spatial expression patterns of the tau-encoding gene MAPT and regional levels of amyloid positron emission tomography (PET), enhance connectivity-based modeling of the spatial variability in tau-PET deposition in the Alzheimer disease (AD) spectrum.
Methods: We included 685 participants (395 amyloid-positive participants within AD spectrum and 290 amyloid-negative controls) with tau-PET and amyloid-PET from 3 studies (Alzheimer's Disease Neuroimaging Initiative, F-AV-1451-A05, and BioFINDER-1). Resting-state functional magnetic resonance imaging was obtained in healthy controls (n = 1,000) from the Human Connectome Project, and MAPT gene expression from the Allen Human Brain Atlas.
Alzheimers Dement (N Y)
August 2023
Introduction: Alzheimer's disease (AD) is characterized by the presence of both amyloid and tau pathology. In vivo diagnosis can be made with amyloid and tau positron emission tomography (PET) imaging. Emergent evidence supports that amyloid and tau accumulation are associated and that amyloid accumulation may precede that of tau.
View Article and Find Full Text PDFImportance: An increased tau positron emission tomography (PET) signal in the medial temporal lobe (MTL) has been observed in older individuals in the absence of amyloid-β (Aβ) pathology. Little is known about the longitudinal course of this condition, and its association with Alzheimer disease (AD) remains unclear.
Objective: To study the pathologic and clinical course of older individuals with PET-evidenced MTL tau deposition (TMTL+) in the absence of Aβ pathology (A-), and the association of this condition with the AD continuum.
Importance: Longitudinal tau positron emission tomography (PET) is a relevant outcome in clinical trials evaluating disease-modifying therapies in Alzheimer disease (AD). A key unanswered question is whether the use of participant-specific (individualized) regions of interest (ROIs) is superior to conventional approaches where the same ROI (group-level) is used for each participant.
Objective: To compare group- and participant-level ROIs in participants at different stages of the AD clinical continuum in terms of annual percentage change in tau-PET standardized uptake value ratio (SUVR) and sample size requirements.
Purpose: Pittsburgh Compound-B (C-PiB) and F-florbetapir are amyloid-β (Aβ) positron emission tomography (PET) radiotracers that have been used as endpoints in Alzheimer's disease (AD) clinical trials to evaluate the efficacy of anti-Aβ monoclonal antibodies. However, comparing drug effects between and within trials may become complicated if different Aβ radiotracers were used. To study the consequences of using different Aβ radiotracers to measure Aβ clearance, we performed a head-to-head comparison of C-PiB and F-florbetapir in a Phase 2/3 clinical trial of anti-Aβ monoclonal antibodies.
View Article and Find Full Text PDFMechanisms of resilience against tau pathology in individuals across the Alzheimer's disease spectrum are insufficiently understood. Longitudinal data are necessary to reveal which factors relate to preserved cognition (i.e.
View Article and Find Full Text PDFBackground: There is an increasing interest in utilizing tau PET to identify patients early in Alzheimer's disease (AD). In this work, a temporal lobe composite (Eτ) volume of interest (VOI) was evaluated in a longitudinal flortaucipir cohort and compared to a previously described global neocortical VOI. In a separate autopsy-confirmed study, the sensitivity of the Eτ VOI for identifying intermediate (B2) neurofibrillary tangle (NFT) pathology was evaluated.
View Article and Find Full Text PDFBackground: Tau-PET is a prognostic marker for cognitive decline in Alzheimer's disease, and the heterogeneity of tau-PET patterns matches cognitive symptom heterogeneity. Thus, tau-PET may allow precision-medicine prediction of individual tau-related cognitive trajectories, which can be important for determining patient-specific cognitive endpoints in clinical trials. Here, we aimed to examine whether tau-PET in cognitive-domain-specific brain regions, identified via fMRI meta-analyses, allows the prediction of domain-specific cognitive decline.
View Article and Find Full Text PDFTimely and accurate diagnosis of Alzheimer's disease (AD) in clinical practice remains challenging. PET and CSF biomarkers are the most widely used biomarkers to aid diagnosis in clinical research but present limitations for clinical practice (i.e.
View Article and Find Full Text PDFPlasma phospho-tau (p-tau) species have emerged as the most promising blood-based biomarkers of Alzheimer's disease. Here, we performed a head-to-head comparison of p-tau181, p-tau217 and p-tau231 measured using 10 assays to detect abnormal brain amyloid-β (Aβ) status and predict future progression to Alzheimer's dementia. The study included 135 patients with baseline diagnosis of mild cognitive impairment (mean age 72.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
September 2022
Purpose: [F]-labeled positron emission tomography (PET) radioligands permit in vivo assessment of Alzheimer's disease biomarkers, including aggregated neurofibrillary tau (NFT) with [F]flortaucipir. Due to structural similarities of flortaucipir with some monoamine oxidase A (MAO-A) inhibitors, this study aimed to evaluate flortaucipir binding to MAO-A and MAO-B and any potential impact on PET interpretation.
Methods: [F]Flortaucipir autoradiography was performed on frozen human brain tissue slices, and PET imaging was conducted in rats.
J Neuropathol Exp Neurol
February 2022
The spread of neurofibrillary tau pathology in Alzheimer disease (AD) mostly follows a stereotypical pattern of topographical progression but atypical patterns associated with interhemispheric asymmetry have been described. Because histopathological studies that used bilateral sampling are limited, this study aimed to assess interhemispheric tau pathology differences and the presence of topographically atypical cortical spreading patterns. Immunohistochemical staining for detection of tau pathology was performed in 23 regions of interest in 57 autopsy cases comparing bilateral cortical regions and hemispheres.
View Article and Find Full Text PDFImportance: Tau positron emission tomography (PET) tracers have proven useful for the differential diagnosis of dementia, but their utility for predicting cognitive change is unclear.
Objective: To examine the prognostic accuracy of baseline fluorine 18 (18F)-flortaucipir and [18F]RO948 (tau) PET in individuals across the Alzheimer disease (AD) clinical spectrum and to perform a head-to-head comparison against established magnetic resonance imaging (MRI) and amyloid PET markers.
Design, Setting, And Participants: This prognostic study collected data from 8 cohorts in South Korea, Sweden, and the US from June 1, 2014, to February 28, 2021, with a mean (SD) follow-up of 1.