Publications by authors named "Pons Francoise"

Carbon dots (CDs) are nanoparticles (NPs) with potential applications in the biomedical field. When in contact with biological fluids, most NPs are covered by a protein corona. As well, upon cell entry, most NP are sequestered in the lysosome.

View Article and Find Full Text PDF

Carbon dots are emerging nanoparticles (NPs) with tremendous applications, especially in the biomedical field. Herein is reported the first quantitative proteomic analysis of the protein corona formed on CDs with different surface charge properties. Four CDs were synthesized from citric acid and various amine group-containing passivation reagents, resulting in cationic NPs with increasing zeta (ζ)-potential and density of positive charges.

View Article and Find Full Text PDF

Carbon nanomaterials, including carbon dots (CDs), form a growing family of engineered nanoparticles (NPs) with widespread applications. As the rapid expansion of nanotechnologies raises safety concerns, interaction of NPs with the immune system is receiving a lot of attention. Recent studies have reported that engineered NPs may induce macrophage death by pyroptosis.

View Article and Find Full Text PDF

Inhaled transfection particles have to penetrate the mucus layer lining the airways to successfully deliver their therapeutic nucleic acid payload to target cells in the underlying epithelium. However, the in vitro models used for evaluating gene carrier efficiency often disregard this viscous defensive barrier. In this study, the two mucus-secreting cell lines NCI-H292 and Calu-3 were selected to develop a series of epithelial models displaying gradual mucus production.

View Article and Find Full Text PDF

This study aimed at discriminating with sensitivity the toxicological effects of carbon dots (CDs) with various zeta potential (ζ) and charge density (Q) in different cellular models of the human respiratory tract. One anionic and three cationic CDs were synthetized as follows: CD-COOH (ζ = -43.3 mV); CD-PEI600 (Q = 4.

View Article and Find Full Text PDF

With the growth of nanotechnologies, concerns raised regarding the potential adverse effects of nanoparticles (NPs), especially on the respiratory tract. Adverse outcome pathways (AOP) have become recently the subject of intensive studies in order to get a better understanding of the mechanisms of NP toxicity, and hence hopefully predict the health risks associated with NP exposure. Herein, we propose a putative AOP for the lung toxicity of NPs using emerging nanomaterials called carbon dots (CDs), and in vivo and in vitro experimental approaches.

View Article and Find Full Text PDF

Background: A positive surface charge has been largely associated with nanoparticle (NP) toxicity. However, by screening a carbon NP library in macrophages, we found that a cationic charge does not systematically translate into toxicity. To get deeper insight into this, we carried out a comprehensive study on 5 cationic carbon NPs (NP2 to NP6) exhibiting a similar zeta (ζ) potential value (from + 20.

View Article and Find Full Text PDF

Alkylphospholipids (APLs) have elicited great interest as antitumor agents due to their unique mode of action on cell membranes. However, their clinical applications have been limited so far by high hemolytic activity. Recently, cationic prodrugs of erufosine, a most promising APL, have been shown to mediate efficient intracellular gene delivery, while preserving the antiproliferative properties of the parent APL.

View Article and Find Full Text PDF

Purpose: Hemolysis is a serious side effect of antitumor alkylphospholipids (APLs) that limits dose levels and is a constraint in their use in therapeutic regimen. Nine prodrugs of promising APLs (miltefosine, perifosine, and erufosine) were synthesized so as to decrease their membrane activity and improve their toxicity profile while preserving their antineoplastic potency.

Methods: The synthesis of the pro-APLs was straightforwardly achieved in one step starting from the parent APLs.

View Article and Find Full Text PDF

Scaffold-assisted gene therapy is a highly promising tool to treat articular cartilage lesions upon direct delivery of chondrogenic candidate sequences. The goal of this study was to examine the feasibility and benefits of providing highly chondroreparative agents, the cartilage-specific sex-determining region Y-type high-mobility group 9 (SOX9) transcription factor or the transforming growth factor beta (TGF-β), to human bone marrow-derived mesenchymal stromal cells (hMSCs) via clinically adapted, independent recombinant adeno-associated virus (rAAV) vectors formulated with carbon dots (CDs), a novel class of carbon-dominated nanomaterials. Effective complexation and release of a reporter rAAV- vector was achieved using four different CDs elaborated from 1-citric acid and pentaethylenehexamine (CD-1); 2-citric acid, poly(ethylene glycol) monomethyl ether (MW 550 Da), and ,-dimethylethylenediamine (CD-2); 3-citric acid, branched poly(ethylenimine) (MW 600 Da), and poly(ethylene glycol) monomethyl ether (MW 2 kDa) (CD-3); and 4-citric acid and branched poly(ethylenimine) (MW 600 Da) (CD-4), allowing for the genetic modification of hMSCs.

View Article and Find Full Text PDF

Sixteen cationic prodrugs of the antitumor alkylphospholipid (APL) erufosine were rationally synthesized to provide original gene delivery reagents with improved cytotoxicity profile. The DNA complexation properties of these cationic lipids were determined and associated transfection rates were measured. Furthermore, the self-assembly properties of the pro-erufosine compounds were investigated and their critical aggregation concentration was determined.

View Article and Find Full Text PDF

Carbon dots (CDs) are emerging nanomaterial in medicine and pharmacy. To explore the impact of physicochemical characteristics on their safety, we synthesized a library of 35 CDs exhibiting different size, charge, chemical composition and surface coating, using various starting materials (carbon source and passivation reagent) and carbonization procedures. The 35 CDs triggered different levels of viability loss when incubated with human macrophages at 3-200 µg/mL for 24 h.

View Article and Find Full Text PDF

Background/objectives: We previously observed that selective agonists of the sympatho-inhibitory I imidazoline receptors (LNP ligands) have favorable effects on several cardiovascular and metabolic disorders defining the metabolic syndrome, including body weight. The objectives of this study were to explore the effects of LNPs on adiposity and the mechanisms involved, and to evaluate their impact on metabolic homeostasis.

Methods: Young Zucker fa/fa rats were treated with LNP599 (10 mg/kg/day) for 12 weeks.

View Article and Find Full Text PDF

Carbon dots (CDs) have been intensively investigated due to their unique photoluminescence (PL) properties that are improved through surface passivation with nitrogen-containing groups. Recently, gene delivery applications emerged as passivation of CDs may yield positively charged nanoparticles that can interact with negatively charged nucleic acids. However previous work in the field focused on the use of high molecular weight polyamines for CD passivation, posing the problem of the separation of nanoparticles from residual polymer that is harmful to cells.

View Article and Find Full Text PDF

The engineering of iron oxide nanoparticles (IONPs) for biomedical use has received great interest over the past decade. In the present study we investigated the biocompatibility of IONPs grafted with linear (2P) or generation 1 (2PG1) or 2 (2PG2) dendronized oligoethyleneglycol units in THP-1-derived macrophages. To evaluate IONP effects on cell functionality and homeostasis, mitochondrial function (MTT assay), membrane permeability (LDH release), inflammation (IL-8), oxidative stress (reduced glutathione, GSH), NLRP3 inflammasome activation (IL-1β) and nanoparticle cellular uptake (intracellular iron content) were quantified after a 4-h or 24-h cell exposure to increasing IONP concentrations (0-300 µg Fe/mL).

View Article and Find Full Text PDF

Mucosal surfaces are promising routes for vaccination. Among mucosa, airway mucosa provides the opportunity to develop non-invasive approaches for vaccine delivery. In the current study, nasal route was used to investigate the potency of highly versatile di-epitopic liposomal constructs of different size, structure and composition to exhibit antitumor efficiency after prophylactic vaccination in mice.

View Article and Find Full Text PDF

Lung diseases are among the more representative causes of mortality and morbidity worldwide and gene therapy is considered as a promising therapeutic approach for their treatment. However the design of efficient nucleic acid carriers for airway administration still is a challenge and there is a pressing need for new developments in this field. Herein, new synthetic DNA carriers based on the conjugation of a phospholipid and C12E4, a nonionic detergent, are developed.

View Article and Find Full Text PDF

The ability of a nonviral nucleic acid carrier to deliver its cargo to cells with low associated toxicity is a critical issue for clinical applications of gene therapy. We describe biodegradable cationic DOPC-C12 E4 conjugates in which transfection efficiency is based on a Trojan horse strategy. In situ production of the detergent compound C12 E4 through conjugate hydrolysis within the acidic endosome compartment was expected to promote endosome membrane destabilization and subsequent release of the lipoplexes into cytosol.

View Article and Find Full Text PDF

Phospholipid-detergent conjugates are proposed as fusogenic carriers for gene delivery. Eleven compounds are prepared and their properties are investigated. The ability of the conjugates to promote fusion with a negatively charged model membrane is determined.

View Article and Find Full Text PDF

With the discovery of tumor-associated antigens such as ErbB2, vaccination is considered as a promising strategy to prevent the development of cancer or treat the existing disease. Among routes of immunization, the respiratory route provides the opportunity to develop non-invasive approach for vaccine delivery. In the current study, this administration route was used in order to investigate the potency of a highly versatile di-epitopic liposomal construct to exhibit local or distant antitumoral efficiency after prophylactic or therapeutic vaccination in mice.

View Article and Find Full Text PDF

Cationic carbon dots were fabricated by pyrolysis of citric acid and bPEI25k under microwave radiation. Various nanoparticles were produced in a 20-30% yield through straightforward modifications of the reaction parameters (stoichiometry of the reactants and energy supply regime). Particular attention was paid to the purification of the reaction products to ensure satisfactory elimination of the residual starting polyamine.

View Article and Find Full Text PDF

With the development of nanotechnologies, the potential adverse effects of nanomaterials such as multi-walled carbon nanotubes (MWCNT) on the respiratory tract of asthmatics are questioned. Furthermore, investigations are necessary to understand how these effects might arise. In the present study, we hypothesized that epithelium-derived innate cytokines that are considered as important promoting factors in allergy may contribute to an aggravating effect of MWCNT on asthma.

View Article and Find Full Text PDF

Purpose: Biolabile cationic lipids were developed for efficient intracellular delivery of DNA and siRNA.

Methods: The compounds have been designed starting from the membrane lipid DOPC in a way they may loose their cationic charge when exposed to an acidic and/or enzymatic stimulus, such as those met during the journey of a lipoplex in biological media.

Results: They demonstrated remarkable efficiency to deliver DNA in various cell lines (BHK-21, Calu-3, NCI-H292, and A549), with no significant cytotoxicity.

View Article and Find Full Text PDF

One of the potential benefits of drug delivery systems in medicine is the creation of nanoparticle-based vectors that deliver a therapeutic cargo in sufficient quantity to a target site to enable a selective effect, width of the therapeutic window depending on the toxicity of the vector and the cargo. In this work, we intended to improve the siRNA delivery efficiency of a new kind of nucleic acid carrier, which is the result of the conjugation of the membrane phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) to the membrane-active species Triton X-100 (TX100). We hypothesized that by improving the biodegradability the cytotoxicity of the conjugate might by reduced, whereas its original transfection potential would be tentatively preserved.

View Article and Find Full Text PDF