In this paper, we demonstrate the successful implementation of reconfigurable field-programmable gate array technology into a pulse-resolved data acquisition system to achieve a femtosecond temporal resolution in ultrafast pump-probe experiments in real-time at large scale facilities. As proof of concept, electro-optic sampling of terahertz waveforms radiated by a superradiant emitter of a quasi-cw accelerator operating at a 50 kHz repetition rate and probed by an external laser system is performed. Options for up-scaling the developed technique to a MHz range of repetition rates are discussed.
View Article and Find Full Text PDFUnderstanding spin-lattice interactions in antiferromagnets is a critical element of the fields of antiferromagnetic spintronics and magnonics. Recently, coherent nonlinear phonon dynamics mediated by a magnon state were discovered in an antiferromagnet. Here, we suggest that a strongly coupled two-magnon-one phonon state in this prototypical system opens a novel pathway to coherently control magnon-phonon dynamics.
View Article and Find Full Text PDFStable composite objects, such as hadrons, nuclei, atoms, molecules and superconducting pairs, formed by attractive forces are ubiquitous in nature. By contrast, composite objects stabilized by means of repulsive forces were long thought to be theoretical constructions owing to their fragility in naturally occurring systems. Surprisingly, the formation of bound atom pairs by strong repulsive interactions has been demonstrated experimentally in optical lattices.
View Article and Find Full Text PDFUltrafast optical control of quantum systems is an emerging field of physics. In particular, the possibility of light-driven superconductivity has attracted much of attention. To identify nonequilibrium superconductivity, it is necessary to measure fingerprints of superconductivity on ultrafast timescales.
View Article and Find Full Text PDFEfficient generation and control of spin currents launched by terahertz (THz) radiation with subsequent ultrafast spin-to-charge conversion is the current challenge for the next generation of high-speed communication and data processing units. Here, we demonstrate that THz light can efficiently drive coherent angular momentum transfer in nanometer-thick ferromagnet/heavy-metal heterostructures. This process is non-resonant and does neither require external magnetic fields nor cryogenics.
View Article and Find Full Text PDFNon-linear materials are cornerstones of modern optics and electronics. Strong dependence on the intrinsic properties of particular materials, however, inhibits the at-will extension of demanding non-linear effects, especially those second-order ones, to widely adopted centrosymmetric materials (for example, silicon) and technologically important burgeoning spectral domains (for example, terahertz frequencies). Here we introduce a universal route to efficient non-linear responses enabled by exciting non-linear Thomson scattering, a fundamental process in electrodynamics that was known to occur only in relativistic electrons in metamaterial composed of linear materials.
View Article and Find Full Text PDFCopper(II)-nitroxide based Cu(hfac)L compounds exhibit unusual magnetic behavior that can be induced by various stimuli. In many aspects, the magnetic phenomena observed in Cu(hfac)L are similar to classical spin-crossover behavior. However, these phenomena originate from polynuclear exchange-coupled spin clusters Cu-O˙-N< or >N-˙O-Cu-O˙-N<.
View Article and Find Full Text PDFSeveral technologies, including photodetection, imaging, and data communication, could greatly benefit from the availability of fast and controllable conversion of terahertz (THz) light to visible light. Here, we demonstrate that the exceptional properties and dynamics of electronic heat in graphene allow for a THz-to-visible conversion, which is switchable at a sub-nanosecond time scale. We show a tunable on/off ratio of more than 30 for the emitted visible light, achieved through electrical gating using a gate voltage on the order of 1 V.
View Article and Find Full Text PDFCuprate high-T superconductors are known for their intertwined interactions and the coexistence of competing orders. Uncovering experimental signatures of these interactions is often the first step in understanding their complex relations. A typical spectroscopic signature of the interaction between a discrete mode and a continuum of excitations is the Fano resonance/interference, characterized by the asymmetric light-scattering amplitude of the discrete mode as a function of the electromagnetic driving frequency.
View Article and Find Full Text PDFRadiation sources with a stable carrier-envelope phase (CEP) are highly demanded tools for field-resolved studies of light-matter interaction, providing access both to the amplitude and phase information of dynamical processes. At the same time, many coherent light sources, including those with outstanding power and spectral characteristics lack CEP stability, and so far could not be used for this type of research. In this work, we present a method enabling linear and non-linear phase-resolved terahertz (THz) -pump laser-probe experiments with CEP-unstable THz sources.
View Article and Find Full Text PDFThe observation of spinon excitations in the [Formula: see text] triangular antiferromagnet CaReOCl reveals a quasi-one-dimensional (1D) nature of magnetic correlations, in spite of the nominally 2D magnetic structure. This phenomenon is known as frustration-induced dimensional reduction. Here, we present high-field electron spin resonance spectroscopy and magnetization studies of CaReOCl, allowing us not only to refine spin-Hamiltonian parameters, but also to investigate peculiarities of its low-energy spin dynamics.
View Article and Find Full Text PDFA conceptually new approach to synchronizing accelerator-based light sources and external laser systems is presented. The concept is based on utilizing a sufficiently intense accelerator-based single-cycle terahertz pulse to slice a thereby intrinsically synchronized femtosecond-level part of a longer picosecond laser pulse in an electro-optic crystal. A precise synchronization of the order of 10 fs is demonstrated, allowing for real-time lock-in amplifier signal demodulation.
View Article and Find Full Text PDFNonlinear optics is an increasingly important field for scientific and technological applications, owing to its relevance and potential for optical and optoelectronic technologies. Currently, there is an active search for suitable nonlinear material systems with efficient conversion and a small material footprint. Ideally, the material system should allow for chip integration and room-temperature operation.
View Article and Find Full Text PDFWe present comprehensive electron spin resonance (ESR) studies of in-plane oriented single crystals of α-RuCl_{3}, a quasi-two-dimensional material with honeycomb structure, focusing on its high-field spin dynamics. The measurements were performed in magnetic fields up to 16 T, applied along the [110] and [100] directions. Several ESR modes were detected.
View Article and Find Full Text PDFSingle crystal neutron diffraction, inelastic neutron scattering, and electron spin resonance experiments are used to study the magnetic structure and spin waves in PbVO(PO), a prototypical layered 12 ferromagnet with frustrating next-nearest neighbor antiferromagnetic interactions. The observed excitation spectrum is found to be inconsistent with a simple square lattice model previously proposed for this material. At least four distinct exchange coupling constants are required to reproduce the measured spin wave dispersion.
View Article and Find Full Text PDFTo detect the anatomical correlations between the form of the palato-alveolar complex and the shape and degree of pneumatization of the maxillary sinuses, skull frontal saw cuts obtained from 60 adult persons were studied at the level of the second molars. The form of the palato-alveolar complex was found to change significantly with the loss of teeth. Thus the palato-alveolar complex with well expressed alveolar process of the upper jaw and high palatal vault more often corresponded to the maxillarysinus of a trihedral or uncertain form with the varying degrees of pneumatization.
View Article and Find Full Text PDFThe radiation effects and relaxation processes in solid N2 and N2-doped Ne matrices, preirradiated by an electron beam, have been studied in the temperature range of 5-40 and 5-15 K, respectively. The study was performed using luminescence methods: cathodoluminescence CL and developed by our group nonstationary luminescence NsL, as well as optical and current activation spectroscopy methods: spectrally resolved thermally stimulated luminescence TSL and exoelectron emission TSEE. An appreciable accumulation of N radicals, N(+), N2(+) ions, and trapped electrons is found in nitrogen-containing Ne matrices.
View Article and Find Full Text PDFUsing two kinds of carboxylate ligands with small but significant differences in steric size, symmetric and asymmetric Fe(II) and Ni(II) cubanes have been synthesized in a controlled fashion. Fast sweeping pulsed field measurements showed magnetization hysteresis loops for two cubane-type molecular complexes, [Ni4(μ-OMe)4(O2CAr(4F-Ph))4(HOMe)8] and [Ni4(μ-OMe)4(O2CAr(Tol))4(HOMe)6], thus suggesting single-molecule magnet behavior. To differentiate the magnetic properties between the symmetric and asymmetric cubanes, detailed electron paramagnetic resonance (EPR) measurements were performed.
View Article and Find Full Text PDFThe spin dynamics and magnetic excitations of the slightly distorted triangular s = 3/2 system α-CaCr (2)O (4) are investigated by means of Raman spectroscopy and electron spin resonance (ESR) to elucidate its peculiar magnetic properties. Two-magnon excitations in circular RL symmetry show a multi-maximum structure with a dominant spectral weight at low energies. The temperature dependence of the ESR linewidth is described by a critical broadening ΔH(pp)(T) is proportional to (T-T(N ))(-p) with the exponent p = 0.
View Article and Find Full Text PDFThe relaxation processes in pure and doped Ar films preirradiated by an electron beam are studied with the focus on charging effects. Correlated real time measurements have been performed applying current and optical activation spectroscopy methods. Thermally stimulated exoelectron emission and thermally stimulated luminescence are detected in the vacuum ultraviolet and visible range.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
May 2010
A plant-based bioremediation (phytoremediation) strategy has been developed and shown to be effective for the clean-up of soil contaminated by the breakdown products of the chemical warfare agent (CWA), yperite. The method involves exploiting the plant growth hormone, indole-3-acetic acid (IAA), to intensify the phytoremediation. For determination of the yperite breakdown products, gas chromatography is used.
View Article and Find Full Text PDFAn irradiation of solid argon sample by electrons ionizes the Ar atoms, and part of the beam energy is stored in the solid mainly in the form of self-trapped Ar(2)(+) holes. The pre-irradiated samples are investigated by methods of the so called "activation spectroscopy". During their controlled warm-up three thermally stimulated effects are observed and, in our experiments, simultaneously monitored: a VUV emission resulting from neutralization of the Ar(2)(+) holes by electrons, an anomalous desorption of surface atoms, and an exoelectron emission.
View Article and Find Full Text PDFThe first carborane triflates, namely, 1-trifluoromethanesulfonylmethyl-o-carborane (2) and 1,2-bis(trifluoromethanesulfonylmethyl)-o-carborane (7), were obtained in high yields in the reactions of 1-hydroxymethyl-o-carborane (1) or 1,2-bis(hydroxymethyl)-o-carborane (6) with triflic anhydride (Tf2O) in CH2Cl2 in the presence of pyridine. When an excess of pyridine is employed, 1-o-carboranylmethylpyridinium triflate (3), which retains a closo-icosahedral structure, or a pyridinium salt (4) with a zwitterionic nido-dicarbaundecaborate anion are obtained from 1, while the nido compound 8 is formed from 6. The reaction of compound 2 or 7 with excess pyridine also gave 3 or 8, respectively.
View Article and Find Full Text PDF