Publications by authors named "Ponnal Nambi"

A series of 4-(3-biaryl)quinolines with sulfone substituents on the terminal aryl ring (8) was prepared as potential LXR agonists. High affinity LXRbeta ligands with generally modest binding selectivity over LXRalpha and excellent agonist potency in LXR functional assays were identified. Many compounds had LXRbeta binding IC(50) values <10 nM while the most potent had EC(50) values <1.

View Article and Find Full Text PDF

A series of 1-(3-aryloxyaryl)benzimidazoles incorporating a sulfone substituent (6) was prepared. High affinity LXR ligands were identified (LXRbeta binding IC(50) values <10nM), some with excellent agonist potency and efficacy in a functional assay of LXR activity measuring ABCA1 mRNA increases in human macrophage THP1 cells. The compounds were typically stable in liver microsome preparations and had good oral exposure in mice.

View Article and Find Full Text PDF

Replacement of a quinoline with an imidazo[1,2-a]pyridine in a series of liver X receptor (LXR) agonists incorporating a [3-(sulfonyl)aryloxyphenyl] side chain provided high affinity LXR ligands 7. In functional assays of LXR activity, good agonist potency and efficacy were found for several analogs.

View Article and Find Full Text PDF

A series of quinoline-3-carboxamide containing sulfones was prepared and found to have good binding affinity for LXRbeta and moderate binding selectivity over LXRalpha. The 8-Cl quinoline analog 33 with a high TPSA score, displayed 34-fold binding selectivity for LXRbeta over LXRalpha (LXRbeta IC(50)=16nM), good activity for inducing ABCA1 gene expression in a THP macrophage cell line, desired weak potency in the LXRalpha Gal4 functional assay, and low blood-brain barrier penetration in rat.

View Article and Find Full Text PDF

A series of 4-(3-aryloxyaryl)quinolines with sulfone substituents on the terminal aryl ring (7) was prepared as LXR agonists. High affinity LXR ligands with excellent agonist potency and efficacy in functional assays of LXR activity were identified. In general, these sulfone agonists were equal to or superior to previously described alcohol and amide analogs in terms of affinity, functional potency, and microsomal stability.

View Article and Find Full Text PDF

A series of 4-(3-aryloxyaryl)quinolines with alcohol substituents on the terminal aryl ring was prepared as potential LXR agonists, in which an alcohol group replaced an amide in previously reported amide analogs. High affinity LXR ligands with excellent agonist potency and efficacy in a functional model of LXR activity were identified, demonstrating that alcohols can substitute for amides while retaining LXR activity. The most potent compound was 5b which had an IC(50)=3.

View Article and Find Full Text PDF

A series of cinnolines/quinolines was prepared and it was found that 4-phenyl-cinnoline/quinolines with either a 2',3' or 2',5'-disubstituted benzyloxy moiety or the 1-Me-7-indole methoxy moiety on the meta position of the 4-phenyl ring showed good binding selectivity for LXRbeta over LXRalpha. The LXRbeta binding selective modulators displayed good activity for inducing ABCA1 gene expression in J774 macrophage cell line and poor efficacy in the LXRalpha Gal4 functional assay. 26, 37 and 41 were examined for their ability to induce SREBP-1c gene expression in Huh-7 liver cell line and they were weak partial agonists.

View Article and Find Full Text PDF

Liver X receptors (LXRs) are ligand-activated transcription factors that coordinate regulation of gene expression involved in several cellular functions but most notably cholesterol homeostasis encompassing cholesterol transport, catabolism, and absorption. WAY-252623 (LXR-623) is a highly selective and orally bioavailable synthetic modulator of LXR, which demonstrated efficacy for reducing lesion progression in the murine LDLR(-/-) atherosclerosis model with no associated increase in hepatic lipogenesis either in this model or Syrian hamsters. In nonhuman primates with normal lipid levels, WAY-252623 significantly reduced total (50-55%) and LDL-cholesterol (LDLc) (70-77%) in a time- and dose-dependent manner as well as increased expression of the target genes ABCA1/G1 in peripheral blood cells.

View Article and Find Full Text PDF

A series of 4-(amido-biarylether)-quinolines was prepared as potential LXR agonists. Appropriate substitution with amide groups provided high affinity LXR ligands, some with excellent potency and efficacy in functional assays of LXR activity. Novel amide 4g had a binding IC(50)=1.

View Article and Find Full Text PDF

A series of substituted 2-benzyl-3-aryl-7-trifluoromethylindazoles were prepared as LXR modulators. These compounds were partial agonists in transactivation assays when compared to 1 (T0901317) and were slightly weaker with respect to potency and efficacy on LXRalpha than on LXRbeta. Lead compounds in this series 12 (WAY-252623) and 13 (WAY-214950) showed less lipid accumulation in HepG2 cells than potent full agonists 1 and 3 (WAY-254011) but were comparable in efficacy to 1 and 3 with respect to cholesterol efflux in THP-1 foam cells, albeit weaker in potency.

View Article and Find Full Text PDF

Background: LXRs (Liver X Receptor alpha and beta) are nuclear receptors that act as ligand-activated transcription factors. LXR activation causes upregulation of genes involved in reverse cholesterol transport (RCT), including ABCA1 and ABCG1 transporters, in macrophage and intestine. Anti-atherosclerotic effects of synthetic LXR agonists in murine models suggest clinical utility for such compounds.

View Article and Find Full Text PDF

A series of potent and binding selective LXRbeta agonists was developed using the previously reported non-selective LXR ligand WAY-254011 as a structural template. With the aid of molecular modeling, it was found that 2,3-diMe-Ph, 2,5-diMe-Ph, and naphthalene substituted quinoline acetic acids (such as quinoline 33, 37, and 38) showed selectivity for LXRbeta over LXRalpha in binding assays.

View Article and Find Full Text PDF

The liver X receptors (LXRalpha and LXRbeta), ligand-activated transcription factors, belong to the superfamily of nuclear hormone receptors and have been shown to play a major role in atherosclerosis by modulating cholesterol and triglyceride metabolism. In this report, we describe a novel LXR target, the adipocyte fatty acid binding protein (aP2), which plays an important role in fatty acid metabolism, adipocyte differentiation and atherosclerosis. While LXR agonists induce aP2 mRNA expression in human monocytes (THP-1 cells) and macrophages in a time- and concentration-dependent manner, they have no effect on aP2 expression in human adipocytes.

View Article and Find Full Text PDF

A series of phenyl acetic acid based quinolines was prepared as LXR modulators. An SAR study in which the C-3 and C-8 positions of the quinoline core were varied led to the identification of two potent LXR agonists 23 and 27. Both compounds displayed good binding affinity for LXRbeta and LXRalpha, and increased expression of ABCA1 in THP-1 cells.

View Article and Find Full Text PDF

A structure-based approach was used to optimize our new class of quinoline LXR modulators leading to phenyl acetic acid substituted quinolines 15 and 16. Both compounds displayed good binding affinity for LXRbeta and LXRalpha and were potent activators in LBD transactivation assays. The compounds also increased expression of ABCA1 and stimulated cholesterol efflux in THP-1 cells.

View Article and Find Full Text PDF

Integrin alphaIIb/beta3 (IIb/IIIa), a platelet fibrinogen receptor, has been shown to play a critical role in thrombosis and hemostasis. However, the mechanisms by which ligands interact with the alphaIIb/beta3 receptor is not very clear at this time. The interaction between the ligand, the receptor and the transmission of extracellular signals may involve the cytoplasmic domains of these integrins.

View Article and Find Full Text PDF

The nuclear receptors liver X receptor (LXR) LXRalpha and LXRbeta are differentially expressed ligand-activated transcription factors that induce genes controlling cholesterol homeostasis and lipogenesis. Synthetic ligands for both receptor subtypes activate ATP binding cassette transporter A1 (ABCA1)-mediated cholesterol metabolism, increase reverse cholesterol transport, and provide atheroprotection in mice. However, these ligands may also increase hepatic triglyceride (TG) synthesis via a sterol response element binding protein 1c (SREBP-1c)-dependent mechanism through a process reportedly regulated by LXRalpha.

View Article and Find Full Text PDF

Liver X receptors (LXRs) play key roles in the regulation of cholesterol homeostasis by limiting cholesterol accumulation in macrophages within arterial wall lesion sites by a mechanism that includes the upregulation of ATP binding cassette transporters. These atheroprotective properties distinguish LXRs as potential targets for pharmaceutical intervention in cardiovascular disease. Their associated activity for promoting lipogenesis and triglyceride accretion through the activation of sterol-response element binding protein 1c (SREBP-1c) expression, however, represents a potential proatherogenic liability.

View Article and Find Full Text PDF

Glomerular mesangial cells play an important role in the development of glomerulosclerosis. Mesangial cell apoptosis has been shown to be involved in different stages of development of glomerulonephritis. The aim of the present study was to evaluate the effect of inhibition of serine/threonine phosphatases by okadaic acid, a shell fish toxin, on rat mesangial cell apoptosis and to examine the molecular mechanisms particularly the role of caspases.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) represent one of the most important drug discovery targets such that compounds targeted against GPCRs represent the single largest drug class currently on the market. With the revolutionary advances in human genome sciences and the identification of numerous orphan GPCRs, it is even more important to identify ligands for these orphan GPCRs so that their physiological and pathological roles can be delineated. To this end, major pharmaceutical industries are investing enormous amounts of time and money to achieve this object.

View Article and Find Full Text PDF

A complementary DNA encoding calcitonin receptor-like receptor (CRLR) was isolated from a bovine aortic endothelial cell library. The bovine CRLR has 462 amino acids and 92% homology with the human CRLR. In a reverse transcriptase-polymerase chain reaction assay, bovine CRLR was found to be widely distributed, including in the heart and lungs.

View Article and Find Full Text PDF