Publications by authors named "Pongsarun Satjaritanun"

Gas diffusion layers (GDLs) play a crucial role in heat transfer and water management of cathode catalyst layers in polymer electrolyte fuel cells (PEFCs). Thermal and water gradients can accelerate electrocatalyst degradation and therefore the selection of GDLs can have a major influence on PEFC durability. Currently, the role of GDLs in electrocatalyst degradation is poorly studied.

View Article and Find Full Text PDF

Interfacial and bulk properties between the catalyst layer and the porous transport layer (PTL) restrict the iridium loading reduction for proton exchange membrane water electrolyzers (PEMWEs), by limiting their mass and charge transport. Using titanium fiber PTLs of varying thickness and porosity, the bulk and interface transport properties are investigated, correlating them to PEMWEs cell performance at ultra-low Ir loadings of ≈0.05 mg cm .

View Article and Find Full Text PDF

Gas diffusion layers (GDLs) are porous carbonaceous layers that are widely used in energy conversion and storage devices. Simulation of water transport through GDLs, in a polymer electrolyte fuel cell (PEFC), for example, typically uses goniometer-measured external contact angles. Until now, there is no well-developed method to obtain contact angles inside the GDLs.

View Article and Find Full Text PDF

Understanding the relationships between porous transport layer (PTL) morphology and oxygen removal is essential to improve the polymer electrolyte water electrolyzer (PEWE) performance. X-ray computed tomography and machine learning were performed on a model electrolyzer at different water flow rates and current densities to determine how these operating conditions alter oxygen transport in the PTLs. We report a direct observation of oxygen taking preferential pathways through the PTL, regardless of the water flow rate or current density (1-4 A/cm).

View Article and Find Full Text PDF

Real-time electrochemical monitoring in bioprocesses is an improvement over existing systems because it is versatile and provides more information to the user than periodic measurements of cell density or metabolic activity. Real-time electrochemical monitoring provides the ability to monitor the physiological status of actively growing cells related to electron transfer activity and potential changes in the proton gradient of the cells. Voltammetric and amperometric techniques offer opportunities to monitor electron transfer reactions when electrogenic microbes are used in microbial fuel cells or bioelectrochemical synthesis.

View Article and Find Full Text PDF

Microbes have a wide range of metabolic capabilities available that makes them industrially useful organisms. Monitoring these metabolic processes is a crucial component in efficient industrial application. Unfortunately, monitoring these metabolic processes can often be invasive and time consuming and expensive, especially within an anaerobic environment.

View Article and Find Full Text PDF