Simulated annealing of chemical potential located the highest affinity positions of eight organic probes and water on eight static structures of hen egg white lysozyme (HEWL) in various conformational states. In all HELW conformations, a diverse set of organic probes clustered in the known binding site (hot spot). Fragment clusters at other locations were excluded by tightly-bound waters so that only the hot-spot cluster remained in each case.
View Article and Find Full Text PDFTo counter the global threat caused by Plasmodium falciparum malaria, new drugs and vaccines are urgently needed. However, there are no practical animal models because P. falciparum infects human erythrocytes almost exclusively.
View Article and Find Full Text PDFNat Rev Drug Discov
January 2007
The sequencing of the first complete bacterial genome in 1995 heralded a new era of hope for antibacterial drug discoverers, who now had the tools to search entire genomes for new antibacterial targets. Several companies, including GlaxoSmithKline, moved back into the antibacterials area and embraced a genomics-derived, target-based approach to screen for new classes of drugs with novel modes of action. Here, we share our experience of evaluating more than 300 genes and 70 high-throughput screening campaigns over a period of 7 years, and look at what we learned and how that has influenced GlaxoSmithKline's antibacterials strategy going forward.
View Article and Find Full Text PDFNat Rev Drug Discov
September 2006
Much of drug discovery today is predicated on the concept of selective targeting of particular bioactive macromolecules by low-molecular-mass drugs. The binding of drugs to their macromolecular targets is therefore seen as paramount for pharmacological activity. In vitro assessment of drug-target interactions is classically quantified in terms of binding parameters such as IC(50) or K(d).
View Article and Find Full Text PDFKinetic analysis of ribosomal peptidyltransferase activity in a methanolic puromycin reaction with wild type and drug-resistant 23 S RNA mutants was used to probe the structural basis of catalysis and mechanism of resistance to antibiotics. 23 S RNA mutants G2032A and G2447A are resistant to oxazolidinones both in vitro and in vivo with the latter displaying a 5-fold increase in the value of Km for initiator tRNA and a 100-fold decrease in Vmax in puromycin reaction. Comparison of the Ki values for oxazolidinones, chloramphenicol, and sparsomycin revealed partial cross-resistance between oxazolidinones and chloramphenicol; no cross-resistance was observed with sparsomycin, a known inhibitor of the peptidyltransferase A-site.
View Article and Find Full Text PDFEscherichia coli under-expressing lepB was utilized to test cellular inhibition of signal peptidase I (SPase). For the construction of a lepB regulatable strain, the E. coli lepB gene was cloned into pBAD, with expression dependent on L-arabinose.
View Article and Find Full Text PDFPeptidoglycan synthesis begins in the cytoplasm with the condensation of UDP-N-acetyl glucosamine (UDP-GlcNAc) and phosphoenolpyruvate catalyzed by UDP-N-acetylglucosamine enolpyruvoyl transferase. UDP-GlcNAc is also utilized as substrate for the glycosyltransferase MurG, a membrane-bound enzyme that catalyzes the production of lipid II. Membranes from Escherichia coli cells overproducing MurG support peptidoglycan formation at a rate approximately fivefold faster than membranes containing wild-type levels of MurG.
View Article and Find Full Text PDFEscherichia coli DnaG primase is a single-stranded DNA-dependent RNA polymerase. Primase catalyzes the synthesis of a short RNA primer to initiate DNA replication at the origin and to initiate Okazaki fragment synthesis for synthesis of the lagging strand. Primase activity is greatly stimulated through its interaction with DnaB helicase.
View Article and Find Full Text PDFAs the global threat of drug- and antibiotic-resistant bacteria continues to rise, new strategies are required to advance the drug discovery process. This work describes the construction of an array of Escherichia coli strains for use in whole-cell screens to identify new antimicrobial compounds. We used the recombination systems from bacteriophages lambda and P1 to engineer each strain in the array for low-level expression of a single, essential gene product, thus making each strain hypersusceptible to specific inhibitors of that gene target.
View Article and Find Full Text PDFThe polC gene from Streptococcus pyogenes (S. pyogenes, strain SF370) has been cloned and expressed in Escherichia coli (E. coli) as a fusion protein containing an N-terminal histidine tag.
View Article and Find Full Text PDFAntimicrob Agents Chemother
April 2002
Osmotically stabilized Escherichia coli cells subjected to freezing and thawing were utilized as the source of enzymes for a peptidoglycan pathway assay that can be used to simultaneously test all targets of the committed steps of cell wall biosynthesis. The use of (14)C-labeled UDP-N-acetylglucosamine (UDP-GlcNAc) as a substrate allows the direct detection of cross-linked peptidoglycan formed. The assay was validated with known antibiotics.
View Article and Find Full Text PDFOxazolidinones are potent inhibitors of bacterial protein biosynthesis. Previous studies have demonstrated that this new class of antimicrobial agent blocks translation by inhibiting initiation complex formation, while post-initiation translation by polysomes and poly(U)-dependent translation is not a target for these compounds. We found that oxazolidinones inhibit translation of natural mRNA templates but have no significant effect on poly(A)-dependent translation.
View Article and Find Full Text PDFIMP-1 metallo-beta-lactamase is a transferable carbapenem-hydrolyzing enzyme found in some clinical isolates of Pseudomonas aeruginosa, Serratia marcescens and Klebsiella pneumoniae. Bacteria that express IMP-1 show significantly reduced sensitivity to carbapenems and other beta-lactam antibiotics. A series of thioester derivatives has been shown to competitively inhibit purified IMP-1.
View Article and Find Full Text PDFBioorg Med Chem Lett
September 1999
Potent thioester and thiol inhibitors of IMP-1 metallo-beta-lactamase have been synthesized employing a solid-phase Mitsunobu reaction as the key step.
View Article and Find Full Text PDFThe structure-activity relationship of a series of non-thiol CaaX analogs, which are inhibitors of farnesyltransferase, is described. These inhibitors contain a substituted phenyl group at the N terminus, which may occupy a novel binding domain on the Ras protein.
View Article and Find Full Text PDFInhibitors of Ras protein farnesyltransferase are described which are reduced pseudopeptides related to the C-terminal tetrapeptide of the Ras protein that signals farnesylation. Reduction of the carbonyl groups linking the first three residues of the tetrapeptide leads to active inhibitors which are chemically unstable. Stability can be restored by alkylating the central amine of the tetrapeptide.
View Article and Find Full Text PDFBackground: High level resistance to carbapenem antibiotics in gram negative bacteria such as Bacteroides fragilis is caused, in part, by expression of a wide-spectrum metallo-beta-lactamase that hydrolyzes the drug to an inactive form. Co-administration of metallo-beta-lactamase inhibitors to resistant bacteria is expected to restore the antibacterial activity of carbapenems.
Results: Biphenyl tetrazoles (BPTs) are a structural class of potent competitive inhibitors of metallo-beta-lactamase identified through screening and predicted using molecular modeling of the enzyme structure.
Bacterial UDP-N-acetylmuramyl-L-alanine:D-glutamate ligase (MurD), a cytoplasmic peptidoglycan biosynthetic enzyme, catalyzes the ATP-dependent addition of D-glutamate to an alanyl residue of the UDP-N-acetylmuramyl-L-alanine precursor, generating the dipeptide. The murD gene was cloned from both Staphylococcus aureus and Streptococcus pyogenes. Sequence analysis of the S.
View Article and Find Full Text PDFHigh level methicillin resistance in Staphylococcus aureus is dependent upon the acquisition of the mecA gene encoding penicillin-binding protein 2a (PBP2a). PBP2a is a member of a family of peptidoglycan biosynthetic enzymes involved in assembly of the cell wall in bacteria and is poorly inactivated by beta-lactam antibiotics. We describe a 96-well-filter binding assay using recombinant, soluble PBP2a which allows for kinetic measurement of penicillin binding.
View Article and Find Full Text PDFBacterial peptidoglycan biosynthesis includes four enzymatic reactions in which successive amino acid residues are ligated to uridine diphospho-N-acetylmuramic acid (UDP-MurNAc). By comparing the amino acid sequences of MurC, -D, -E, and -F proteins from various bacterial genera, four regions of homology were identified. A profile search of Swissprot for related sequences revealed that these regional similarities were present in the folyl-gamma-polyglutamate ligases.
View Article and Find Full Text PDFThe gene from Bacteroides fragilis encoding a metallo-beta-lactamase, ccrA, was expressed in Escherichia coli BL21(DE3) containing the wild-type disulfide bond-catalyzing system dsb as an active, soluble enzyme in quantities exceeding 100 mg/liter using both rich and minimal media. Both the nonfusion and a glutathione S-transferase fusion enzyme lacking the periplasmic signal sequence were purified to homogeneity. Characteristics of the purified nonfusion enzyme are shown to be similar to those of the renatured enzyme previously reported.
View Article and Find Full Text PDFThe D-alanyl-D-alanine-adding enzyme encoded by the murF gene catalyzes the ATP-dependent formation of UDP-N-acetylmuramyl-L-gamma-D-Glu-meso-diaminopimelyl-D-Ala-D-Ala (UDP-MurNAc-tripeptide). MurF has been cloned from Escherichia coli and expressed as a glutathione S-transferase (GST) fusion using the tac promoter-based pGEX-KT vector. From induced, broken cell preparations, highly active fusion was recovered and purified in one step by affinity chromatography.
View Article and Find Full Text PDF