Bioplastics have entered everyday life as a potential sustainable substitute for commodity plastics. However, still further progress should be made to clarify their degradation behavior under controlled and uncontrolled conditions. The wide array of biopolymers and commercial blends available make predicting the biodegradation degree and kinetics quite a complex issue that requires specific knowledge of the multiple factors affecting the degradation process.
View Article and Find Full Text PDFIn the present study commercial Polylactic Acid-based disposable cups and plates were selected for lab scale anaerobic degradability tests. The experiments were carried out under thermophilic conditions at different inoculum to substrate ratios and test material sizes, and the specific biogas production and associated kinetics were evaluated. Maximum biogas production was comparable for almost all the experimental runs (1620 and 1830 NmL/gTOC) and a biodegradation degree in the range 86-100% was attained.
View Article and Find Full Text PDFVolatile fatty acids (VFAs) are high-value chemicals that are increasingly demanded worldwide. Biological production via food waste (FW) dark fermentation (DF) is a promising option to achieve the sustainability and environmental benefits typical of biobased chemicals and concurrently manage large amounts of residues. DF has a great potential to play a central role in waste biorefineries due to its ability to hydrolyze and convert complex organic substrates into VFAs that can be used as building blocks for bioproducts, chemicals and fuels.
View Article and Find Full Text PDFCheese whey (CW) is the main by-product of the dairy industry and is often considered one of the main agro-industrial biowaste streams to handle, especially within the European Union, where the diary activities play an essential role in the agrarian economy. In the paper, Life Cycle Assessment (LCA) is used to analyse the feasibility of producing polyhydroxyalkanoates (PHA) as the main output of an innovative CW valorisation route which is benchmarked against a conventional anaerobic digestion (AD) process. To this aim, the LCA inventory data are derived from lab-scale PHA accumulation tests performed on real CW, while data from the literature of concern are used for modelling both the PHA extraction from the accumulating biomass and for the alternative CW valorisation through AD.
View Article and Find Full Text PDFThe Circular and Green Economy principles is inspiring new approaches to municipal wastewater treatment plants (MWWTPs) design and operation. Recently, an ever-growing interest is devoted to exploring the alternatives for switching the WWTPs from being able to 'simply' removing contaminants from water to biorefinery-like plants where energy and material can be recovered. In this perspective, both wastewater and residues from process can be valorised for recovering nutrients (N and P), producing value added products (i.
View Article and Find Full Text PDFWith an estimated worldwide production of 190 billion kg per year, and due to its high organic load, cheese whey represents a huge opportunity for bioenergy and biochemicals production. Several physical, chemical and biological processes have been proposed to valorise cheese whey by producing biofuels (methane, hydrogen, and ethanol), electric energy, and/or chemical commodities (carboxylic acids, proteins, and biopolymers). A biorefinery concept, in which several value-added products are obtained from cheese whey through a cascade of biotechnological processes, is an opportunity for increasing the product spectrum of dairy industries while allowing for sustainable management of the residual streams and reducing disposal costs for the final residues.
View Article and Find Full Text PDFThe concept of biorefinery expands the possibilities to extract value from organic matter in form of either bespoke crops or organic waste. The viability of biorefinery schemes depends on the recovery of higher-value chemicals with potential for a wide distribution and an untapped marketability. The feasibility of biorefining organic waste is enhanced by the fact that the biorefinery will typically receive a waste management fee for accepting organic waste.
View Article and Find Full Text PDFThis paper evaluates the effects of ultrasonication (US) applied, individually or in combination with a mechanical treatment, to the effluent of anaerobic digestion (AD) of lignocellulosic waste, on methane (CH) production. US of the substrate downstream of AD is a relatively novel concept aimed at improving the degradation of recalcitrant components in order to enhance the overall energy efficiency of the process. US tests were carried out on real digestate samples at different energies (500-50,000 kJ/kg total solids (TS), corresponding to sonication densities of 0.
View Article and Find Full Text PDFThree different experimental sets of runs involving batch fermentation assays were performed to evaluate the influence of the experimental conditions on biological hydrogen production from the source-separated organic fraction of municipal solid waste collected through a door-to-door system. The fermentation process was operated with and without automatic pH control, at a pH of 5.5 and 6.
View Article and Find Full Text PDFBatch factorial experiments were performed on cheese whey+wastewater sludge mixtures to evaluate the influence of pH and the inoculum-to-substrate ratio (ISR) on fermentative H production and build a related predictive model. ISR and pH affected H potential and rate, and the fermentation pathways. The specific H yield varied from 61 (ISR=0, pH=7.
View Article and Find Full Text PDFOne- and two-stage anaerobic digestion of food waste aimed at recovering methane (CH) and hydrogen and methane (H+CH), respectively, were compared in order to assess the potential benefits from the two-stage process in terms of overall energy recovery. Results suggest that a two-stage process where the first reactor is properly operated in order to achieve a significant net hydrogen production, may display a 20% comparatively higher energy recovery yield as a result, mainly, of enhanced methane production as well as of the associated hydrogen production. The highest methane production of the two-stage process was due to improved hydrolysis and fermentation of food waste, with increased amounts of volatile fatty acids being readily available to methanogenesis.
View Article and Find Full Text PDFThe present study evaluates the influence of alkaline (NaOH) pretreatment on anaerobic digestion of olive pomace. Batch hydrolysis experiments with different NaOH dosages, process durations and temperatures were conducted, in which the variation of olive pomace solubilization in the liquid phase was investigated. The effect of pretreatment on anaerobic digestion was studied through biochemical methane potential assays.
View Article and Find Full Text PDFA factorial study was conducted on basic oxygen furnace slag from a steelmaking industry with the aim of systematically identifying the individual and joint effects of the operating parameters (total pressure, CO2 concentration in the gas phase and temperature) on the CO2 sequestration yield of a direct aqueous carbonation process. Each operating parameter was varied over a range of three levels according to a 3(3) factorial design, resulting in 27 carbonation experiments. The carbonation performance and the changes in particle size and mineralogical characteristics of the slag were investigated in detail.
View Article and Find Full Text PDFSite selection for waste disposal is a complex task that should meet the requirements of communities and stakeholders. In this article, three decision support methods (Boolean logic, index overlay and fuzzy gamma) are used to perform land suitability analysis for landfill siting. The study was carried out in one of the biggest metropolitan regions of Italy, with the objective of locating suitable areas for waste disposal.
View Article and Find Full Text PDFDredged sediments contaminated by heavy metals and PAHs were subjected to both unenhanced and enhanced electrokinetic remediation under different operating conditions, obtained by varying the applied voltage and the type of conditioning agent used at the electrode compartments in individual experiments. While metals were not appreciably mobilized as a result of the unenhanced process, metal removal was found to be significantly improved when both the anodic and cathodic reservoirs were conditioned with the chelating agent EDTA, with removal yields ranging from 28% to 84% depending on the contaminant concerned. As for the effect on organic contaminants, under the conditions tested the electrokinetic treatment displayed a poor removal capacity towards PAHs, even when a surfactant (Tween 80) was used to promote contaminant mobilization, indicating the need for further investigation on this issue.
View Article and Find Full Text PDFIn the present study the evolution of mechanical strength and the leaching behavior of major and trace elements from activated incinerator bottom ash/Portland cement mixtures were investigated. Chemical and mechanical activation were applied with the purpose of improving the reactivity of bottom ash in cement blends. Chemical activation made use of NaOH, KOH, CaCl(2) or CaSO(4), which were selected for the experimental campaign on the basis of the results from previous studies.
View Article and Find Full Text PDFThis work presents the results of a study on accelerated carbonation of incinerator air pollution control residues, with a particular focus on the modifications in the leaching behaviour of the ash. Aqueous carbonation experiments were carried out using 100% CO(2) at different temperatures, pressures and liquid-to-solid ratios, in order to assess their influence on process kinetics, CO(2) uptake and the leaching behaviour of major and trace elements. The ash showed a particularly high reactivity towards CO(2), owing to the abundance of calcium hydroxides phases, with a maximum CO(2) uptake of approximately 250g/kg.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
July 2008
In the present work, the application of an assisted electrokinetic process for the removal of heavy metals from real contaminated sediments was investigated. The process made use of both chemical and physical methods, including addition of chelating and acid agents, as well as application of a hydraulic gradient. Lab-scale electrokinetic runs were applied on two different dredged sediments varying the applied voltage gradient and the treatment duration.
View Article and Find Full Text PDFThe increasing volumes of municipal solid waste produced worldwide are encouraging the development of processes to reduce the environmental impact of this waste stream. Combustion technology can facilitate volume reduction of up to 90%, with the inorganic contaminants being captured in furnace bottom ash, and fly ash/APC residues. The disposal or reuse of these residues is however governed by the potential release of constituent contaminants into the environment.
View Article and Find Full Text PDFJ Hazard Mater
September 2004
Different artificial ageing treatments were applied to fresh incinerator bottom ash with the aim of promoting/accelerating the natural reactions occurring over time on the mineral phases in the material. The weathering treatments included accelerated carbonation, treatment with air and treatment with nitrogen gas. Both fresh and treated bottom ashes were characterized for their mineralogical composition, acid neutralization capacity and leaching behavior of metals.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
June 2004
The feasibility of treating a heavy metal-contaminated soil by means of a solidification/stabilization treatment consisting of a granulation process is discussed in the present article. The aim of the study was to attain contaminant immobilization within the agglomerated solid matrix. The soil under concern was characterized by varying levels of heavy metal contamination, ranging from 50 to 500 mg kg(-1) dry soil for chromium.
View Article and Find Full Text PDFImportant advantages, including reductions in fuel consumption and labour cost, arise from the optimal design of solid waste (SW) collection routes. Further, optimal design can reduce vehicle maintenance expenditures and improve traffic conditions in urban areas. To date, optimal routes have been developed according to intuitive methodologies and field experience.
View Article and Find Full Text PDF