Publications by authors named "Polydefkis Diamantis"

The impact of an 8-oxoguanine (8oxoG) defect on the redox properties of DNA within the nucleosome core particle (NCP) was investigated employing hybrid quantum mechanical/molecular mechanics (QM/MM) molecular dynamics simulations of native and 8oxoG-containing NCP systems with an explicit representation of a biologically relevant environment. Two distinct NCP positions with varying solvent accessibility were considered for 8oxoG insertion. In both cases, it is found that the presence of 8oxoG drastically decreases the redox free energy of oxidation by roughly 1 eV, which is very similar to what was recently reported for free native and 8oxoG-containing DNA.

View Article and Find Full Text PDF

Halogenated groups are relevant in pharmaceutical applications and potentially useful spectroscopic probes for infrared spectroscopy. In this work, the structural dynamics and infrared spectroscopy of -fluorophenol (F-PhOH) and phenol (PhOH) is investigated in the gas phase and in water using a combination of experiment and molecular dynamics (MD) simulations. The gas phase and solvent dynamics around F-PhOH and PhOH is characterized from atomistic simulations using empirical energy functions with point charges or multipoles for the electrostatics, Machine Learning (ML) based parametrizations and with full (QM) and mixed Quantum Mechanical/Molecular Mechanics (QM/MM) simulations with a particular focus on the CF- and OH-stretch region.

View Article and Find Full Text PDF

A promising approach to influence and control the photophysical properties of conjugated polymers is directing their molecular conformation by templating. We explore here the templating effect of single-stranded DNA oligomers (ssDNAs) on cationic polythiophenes with the goal to uncover the intermolecular interactions that direct the polymer backbone conformation. We have comprehensively characterized the optical behavior and structure of the polythiophenes in conformationally distinct complexes depending on the sequence of nucleic bases and addressed the effect on the ultrafast excited-state relaxation.

View Article and Find Full Text PDF

The redox properties of two large DNA fragments composed of 39 base pairs, differing only by an 8-oxoguanine (8oxoG) defect replacing a guanine (G), were investigated in physiological conditions using mixed quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations. The quantum region of the native fragment comprised 3 G-C base pairs, while one G was replaced by an 8oxoG in the defect fragment. The calculated values for the redox free energy are 6.

View Article and Find Full Text PDF

The effect of single amino acid mutations on the rebinding dynamics of nitrogen monoxide (NO) to myoglobin is investigated using reactive molecular dynamics simulations. In particular, mutations of residues surrounding the heme-active site (Leu29, His64, Val68) were considered. Consistent with experiments, all mutations studied here have a significant effect on the kinetics of the NO-rebinding process, which consists of a rapid (several 10 ps) and a slow (100s of ps) time scale.

View Article and Find Full Text PDF

To assess the effect of an 8-oxoguanine (8OG) defect base on the vertical ionization energies (VIEs) and electron affinities (VEAs) of DNA, density functional theory calculations were carried out for native and defect DNA bases and nucleotides, as well as for larger fragments containing one or multiple pairs. Absolute values of VIE and VEA under implicit solvation did not converge as a function of model size even up to the largest systems taken into consideration (3 base pairs/2 nucleotide pairs). Nonetheless, a consistent trend was observed for the relative difference in the VIE of native and damaged DNA showing that the defect was lowering the VIE by -0.

View Article and Find Full Text PDF

In heme proteins, the efficient transport of ligands such as NO or O2 to the binding site is achieved via ligand migration networks. A quantitative assessment of ligand diffusion in these networks is thus essential for a better understanding of the function of these proteins. For this, Xe migration in truncated hemoglobin N (trHbN) of Mycobacterium Tuberculosis was studied using molecular dynamics simulations.

View Article and Find Full Text PDF

The oxidation of ground-state (singlet) and triplet [Ru(bpy)3](2+) were studied by full quantum-mechanical (QM) and mixed quantum/classical (QM/MM) molecular dynamics simulations. Both approaches provide reliable results for the redox potentials of the two spin states. The two redox reactions closely obey Marcus theory for electron transfer.

View Article and Find Full Text PDF

The Laboratory of Computational Chemistry and Biochemistry is active in the development and application of first-principles based simulations of complex chemical and biochemical phenomena. Here, we review some of our recent efforts in extending these methods to larger systems, longer time scales and increased accuracies. Their versatility is illustrated with a diverse range of applications, ranging from the determination of the gas phase structure of the cyclic decapeptide gramicidin S, to the study of G protein coupled receptors, the interaction of transition metal based anti-cancer agents with protein targets, the mechanism of action of DNA repair enzymes, the role of metal ions in neurodegenerative diseases and the computational design of dye-sensitized solar cells.

View Article and Find Full Text PDF