Exotic tephritid incursions are of high concern to Australia's biosecurity and its horticultural industries. It is vital that Australia remains ready to respond to incursions as they arise, as an incursion of tephritid fruit fly species will result in significant economic losses. In this review, we compared Australian incursion management strategies for fruit flies with global management strategies and identified possible areas where improvements could be made in an Australian context.
View Article and Find Full Text PDFBackground: Queensland fruit fly (Qfly) males exhibit accelerated sexual maturation when their diet is supplemented with raspberry ketone (RK) for 48 h following emergence, which is beneficial for sterile insect technique operation. The present study tests whether RK supplementation makes Qfly more vulnerable to starvation or desiccation.
Results: Flies were fed for 48 h with a yeast hydrolysate and sugar diet (1:3) that contained 0% RK (control), 1.
Juvenile hormone is an important regulator of sexual development in insects, and application of methoprene, a juvenile hormone analogue, together with access to a protein-rich diet, has been found to accelerate sexual maturation of several tephritid fruit fly species including Queensland fruit fly Bactrocera tryoni ('Q-fly'). Such accelerated development is a potentially valuable means to increase participation of released males in sterile insect technique programs. However, there is a risk that benefits of accelerated maturation might be countered by increased vulnerability to starvation and desiccation.
View Article and Find Full Text PDFThe sterile insect technique (SIT) is a sustainable pest management tool based on the release of millions of sterile insects that suppress reproduction in targeted populations. Success of SIT depends on survival, maturation, dispersal, and mating of released sterile insects. Laboratory and field cage studies have demonstrated that dietary supplements of methoprene and raspberry ketone (RK) promote sexual maturation of adult Queensland fruit fly, Bactrocera tryoni (Froggatt), and may hence shorten the delay between release and maturity in the field.
View Article and Find Full Text PDFInsects tend to live within well-defined habitats, and at smaller scales can have distinct microhabitat preferences. These preferences are important, but often overlooked, in applications of the sterile insect technique. Different microhabitat preferences of sterile and wild insects may reflect differences in environmental tolerance and may lead to spatial separation in the field, both of which may reduce the control program efficiency.
View Article and Find Full Text PDFQueensland fruit fly (Q-fly), Bactrocera tryoni (Froggatt), presents a major threat to Australian fruit production and trade. The sterile insect technique (SIT) is increasingly employed to manage Q-fly. Quality of sterile males released in SIT programs, and hence program efficacy, can be affected by pre- and post-production processes, such as mass rearing, packing, irradiation, transportation, and release.
View Article and Find Full Text PDFBackground: The sterile insect technique (SIT) is used in Australia to contain and eradicate outbreaks of Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) in fruit-fly-free regions, and to manage populations in some endemic regions. To assess the likely impact of SIT on wild B. tryoni populations it is important to assess the colocation and synchrony of male calling between sterile and wild flies.
View Article and Find Full Text PDFThe sterile insect technique (SIT) and male annihilation technique (MAT) are important tools for the control of Queensland fruit fly (Q-fly), Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), a major insect pest of horticultural crops in Australia. In MAT, mature Q-fly males are attracted to a toxic bait using Cuelure, a synthetic analog of raspberry ketone (RK). Substantial improvements in control could be achieved by simultaneous use of SIT and MAT, but this requires suppression of the Cuelure response in released sterile flies.
View Article and Find Full Text PDFSterile insect technique (SIT) is an environmentally benign pest management technique that involves releasing millions of sterile insects to suppress reproduction of pest populations. Many fruit flies, including Queensland fruit fly (Bactrocera tryoni Froggatt, 'Q-fly'), have long adult maturation periods such that pre-maturation mortality can greatly reduce abundance of sexually active sterile males and impede SIT efficacy. Q-fly is the most difficult and costly challenge to market access for Australia's horticulture industries, and has been targeted for intensive use of SIT program.
View Article and Find Full Text PDFQueensland fruit flies Bactrocera tryoni ('Q-fly') have long adult prereproductive development periods, which can present challenges for sterile insect technique (SIT) programs. Holding the sterile flies in release facilities is expensive for control programs. Alternatively, releases of sexually immature males can lead to substantial mortality of sterile males before they mature.
View Article and Find Full Text PDFBackground: Queensland fruit fly (Q-fly) is a destructive insect pest that infests a wide variety of agricultural plants in Australia. The sterile insect technique (SIT) is used to manage Q-flies, but the effectiveness of SIT has not been tested in the presence of natural predators. The objective of this study was to investigate the effect of natural predators and SIT on the survival and reproduction of laboratory reared Q-flies under semi-natural conditions.
View Article and Find Full Text PDFThe olive fruit fly, Bactrocera oleae (Rossi), is the most important insect pest for the cultivation of olives worldwide. Considerable research efforts have been invested in the past decades to develop eradication or suppression tactics for use within an area-wide integrated pest management (AW-IPM) approach that includes a sterile insect technique (SIT) component. One of the major obstacles encountered in the development of SIT for olive fruit fly was the inferior quality of the mass-reared flies, expressed among others evident primarily by sterile males having a different timing of peak mating and a lower mating propensity in comparison with their wild counterparts.
View Article and Find Full Text PDFTephritid fruit flies are amongst the most damaging insect pests of horticulture globally. Some of the key fruit fly species are managed using the sterile insect technique (SIT), whereby millions of sterile males are released to suppress reproduction of pest populations. Male annihilation technique (MAT), whereby sex specific lures are used to attract and kill males, is often used to reduce wild male numbers before SIT programs commence, providing released sterile males an increased numerical advantage.
View Article and Find Full Text PDFThe Mediterranean fruit fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) is one of the most important pest of fruits and vegetables in tropical and subtropical countries. The sterile insect technique (SIT) as a component of area-wide integrated pest management (AW-IPM) approaches is being used for the successful management of this pest. VIENNA 8 is a genetic sexing strain (GSS) that has a white pupae (wp) and temperature sensitive lethal (tsl) mutation, the latter killing all female embryos when eggs are exposed to high temperatures (34°C).
View Article and Find Full Text PDFDespite of the economic importance of the olive fly (Bactrocera oleae) and the large amount of biological and ecological studies on the insect, the factors driving its population dynamics (i.e., population persistence and regulation) had not been analytically investigated until the present study.
View Article and Find Full Text PDFΜetal cofactors are required for enzymatic catalysis and structural stability of many proteins. Physiological metal requirements underpin the evolution of cellular and systemic regulatory mechanisms for metal uptake, storage and excretion. Considering the role of metal biology in animal evolution, this paper asks whether metal content is conserved between different fruit flies.
View Article and Find Full Text PDFThe Mediterranean fruit fly (medfly, Ceratitis capitata Wiedemann) is a pest of over 300 fruits, vegetables and nuts. The sterile insect technique (SIT) is a control measure used to reduce the reproductive potential of populations through the mass release of sterilized male insects that mate with wild females. However, SIT flies can display poor field performance, due to the effects of mass-rearing and of the irradiation process used for sterilization.
View Article and Find Full Text PDFParasitoid wasps are convenient subjects for testing sex allocation theory. However, their intricate life histories are often insufficiently captured in simple analytical models. In the polyembryonic wasp Copidosoma koehleri, a clone of genetically identical offspring develops from each egg.
View Article and Find Full Text PDFBackground: The olive fruit fly, Bactrocera oleae, is the major arthropod pest of commercial olive production, causing extensive damage to olive crops worldwide. Current control techniques rely on spraying of chemical insecticides. The sterile insect technique (SIT) presents an alternative, environmentally friendly and species-specific method of population control.
View Article and Find Full Text PDFThe microbiome of the olive fruit fly, Bactrocera oleae (Gmelin), a worldwide pest of olives (Olea europaea L.), has been examined for >100 yr as part of efforts to identify bacteria that are plant pathogens vectored by the fly or are beneficial endosymbionts essential for the fly's survival and thus targets for possible biological control. Because tephritid fruit flies feed on free-living bacteria in their environment, distinguishing between the transient, acquired bacteria of their diet and persistent, resident bacteria that are vertically transmitted endosymbionts is difficult.
View Article and Find Full Text PDF