Publications by authors named "Polyana Kelly Martins"

Background: A major limiting factor for plant growth is the aluminum (Al) toxicity in acidic soils, especially in tropical regions. The exclusion of Al from the root apex through root exudation of organic acids such as malate and citrate is one of the most ubiquitous tolerance mechanisms in the plant kingdom. Two families of anion channels that confer Al tolerance are well described in the literature, ALMT and MATE family.

View Article and Find Full Text PDF

Background: Sugarcane ( spp.) covers vast areas of land (around 25 million ha worldwide), and its processing is already linked into infrastructure for producing bioethanol in many countries. This makes it an ideal candidate for improving composition of its residues (mostly cell walls), making them more suitable for cellulosic ethanol production.

View Article and Find Full Text PDF

Setaria viridis is an emerging model for C4 species, and it is an important model to validate some genes for further C4 crop transformation, such as sugarcane, maize, and wheat. Here, we describe two protocols for stable transformation of S. viridis mediated by Agrobacterium tumefaciens with three different reporter genes and two selectable markers.

View Article and Find Full Text PDF

Sugarcane (Saccharum spp.) is a monocotyledonous semi-perennial C4 grass of the Poaceae family. Its capacity to accumulate high content of sucrose and biomass makes it one of the most important crops for sugar and biofuel production.

View Article and Find Full Text PDF

Background: Second-generation ethanol (2G-bioethanol) uses lignocellulosic feedstocks for ethanol production. Sugarcane is one among the most suitable crops for biofuel production. Its juice is extracted for sugar production, while sugarcane bagasse, straw, and senescing leaves are considered industrial waste.

View Article and Find Full Text PDF

Real-time PCR (RT-qPCR) expression analysis is a powerful analytical technique, but reliable results depend on the use of stable reference genes for proper normalization. This study proposed to test the expression stability of 13 candidate reference genes in Setaria viridis, a monocot species recently proposed as a new C4 model plant. Gene expression stability of these genes was assayed across different tissues and developmental stages of Setaria and under drought or aluminum stress.

View Article and Find Full Text PDF

was recently described as a new monocotyledonous model species for C4 photosynthesis research and genetic transformation. It has biological attributes (rapid life cycle, small genome, diploid, short stature and simple growth requirements) that make it suitable for use as a model plant. We report an alternative method of transformation using floral dip to circumvent the necessity of tissue culture phase for transgenic plant regeneration.

View Article and Find Full Text PDF

The production and use of sugarcane in Brazil is very important for bioenergy production and is recognized as one of the most efficient in the world. In our laboratory, is being tested as a model plant for sugarcane. has biological attributes (rapid life cycle, small genome, diploid, short stature and simple growth requirements) that make it suitable for use as a model system.

View Article and Find Full Text PDF

Drought is one of the most challenging agricultural issues limiting sustainable sugarcane production and, in some cases, yield losses caused by drought are nearly 50%. DREB proteins play vital regulatory roles in abiotic stress responses in plants. The transcription factor DREB2A interacts with a cis-acting DRE sequence to activate the expression of downstream genes that are involved in drought-, salt- and heat-stress response in Arabidopsis thaliana.

View Article and Find Full Text PDF

The citrus greening (or huanglongbing) disease has caused serious problems in citrus crops around the world. An early diagnostic method to detect this malady is needed due to the rapid dissemination of Candidatus Liberibacter asiaticus (CLas) in the field. This analytical study investigated the fluorescence responses of leaves from healthy citrus plants and those inoculated with CLas by images from a stereomicroscope and also evaluated their potential for the early diagnosis of the infection caused by this bacterium.

View Article and Find Full Text PDF

This study investigated the organic and inorganic constituents of healthy leaves and Candidatus Liberibacter asiaticus (CLas)-inoculated leaves of citrus plants. The bacteria CLas are one of the causal agents of citrus greening (or Huanglongbing) and its effect on citrus leaves was investigated using laser-induced breakdown spectroscopy (LIBS) combined with chemometrics. The information obtained from the LIBS spectra profiles with chemometrics analysis was promising for the construction of predictive models to identify healthy and infected plants.

View Article and Find Full Text PDF